intros; cases (value l i) (q Hq); cases Hq; clear Hq; simplify; cases H1; clear H1;
try assumption; cases H2; cases (?:False); apply (H1 H);
qed.
+
+inductive value_ok_spec (f : q_f) (i : ℚ) : nat × ℚ → Type ≝
+ | value_ok : ∀n,q. n ≤ (len (bars f)) →
+ q = \snd (nth (bars f) ▭ n) →
+ sum_bases (bars f) n ≤ ⅆ[i,start f] →
+ ⅆ[i, start f] < sum_bases (bars f) (S n) → value_ok_spec f i 〈n,q〉.
lemma value_ok:
- ∀f,i. bars f ≠ [] → start f ≤ i → i < start f + sum_bases (bars f) (len (bars f)) →
- And4
- (\fst (\fst (value f i)) ≤ (len (bars f)))
- (\snd (\fst (value f i)) = \snd (nth (bars f) ▭ (\fst (\fst (value f i)))))
- (sum_bases (bars f) (\fst (\fst (value f i))) ≤ ⅆ[i,start f])
- (ⅆ[i, start f] < sum_bases (bars f) (S (\fst (\fst (value f i))))).
-intros; cases (value f i); cases H3; simplify; clear H3; cases H4;
+ ∀f,i.bars f ≠ [] → start f ≤ i → i < start f + sum_bases (bars f) (len (bars f)) →
+ value_ok_spec f i (\fst (value f i)).
+intros; cases (value f i); simplify;
+cases H3; simplify; clear H3; cases H4; clear H4;
[1,2,3: cases (?:False);
[1: apply (q_lt_le_incompat ?? H3 H1);
|2: apply (q_lt_le_incompat ?? H2 H3);
|3: apply (H H3);]
-|4: split; cases H7; try assumption;]
-qed.
-
+|4: cases H7; clear H7; cases w in H3 H4 H5 H6 H8; simplify; intros;
+ constructor 1; assumption;]
+qed.
+
definition same_values ≝
λl1,l2:q_f.
∀input.\snd (\fst (value l1 input)) = \snd (\fst (value l2 input)).
include "nat_ordered_set.ma".
include "models/q_bars.ma".
+lemma key:
+ ∀n,m,l.
+ sum_bases l n < sum_bases l (S m) →
+ sum_bases l m < sum_bases l (S n) →
+ n = m.
+intros 2; apply (nat_elim2 ???? n m);
+[1: intro X; cases X; intros; [reflexivity] cases (?:False);
+ cases l in H H1; simplify; intros;
+ apply (q_lt_le_incompat ??? (sum_bases_ge_OQ ? n1));
+ apply (q_lt_canc_plus_r ??? H1);
+|2: intros 2; cases l; simplify; intros; cases (?:False);
+ apply (q_lt_le_incompat ??? (sum_bases_ge_OQ ? n1));
+ apply (q_lt_canc_plus_r ??? H); (* magia ... *)
+|3: intros 4; cases l; simplify; intros;
+ [1: rewrite > (H []); [reflexivity]
+ apply (q_lt_canc_plus_r ??(Qpos one)); assumption;
+ |2: rewrite > (H l1); [reflexivity]
+ apply (q_lt_canc_plus_r ??(Qpos (\fst b))); assumption;]]
+qed.
+
lemma initial_shift_same_values:
∀l1:q_f.∀init.init < start l1 →
same_values l1
rewrite > q_plus_OQ; apply q_eq_to_le; reflexivity;]
rewrite > (value_OQ_r ?? K); simplify; symmetry; assumption;
|3: simplify in Hi1; destruct Hi1;
-|4:
-
-STOP
-
+|4: cases (q_cmp input (start l1));
+ [2: rewrite > (value_OQ_l ?? H4);
+ change with (OQ = \snd v1); rewrite > Hv12;
+ cases H3; clear H3; simplify in H5; cases (\fst v1) in H5;[intros;reflexivity]
+ simplify; rewrite > q_d_sym; rewrite > q_d_noabs; [2:cases Hi1; apply H5]
+ rewrite > H2; do 2 rewrite > q_elim_minus;rewrite > q_plus_assoc;
+ intro X; lapply (q_le_canc_plus_r ??? X) as Y; clear X;
+ (* OK *)
+ |1,3: cases Hi1; clear Hi1; cases H3; clear H3;
+ simplify in H5 H6 H8 H9 H7:(? ? (? % %)) ⊢ (? ? ? (? ? ? %));
+ generalize in match (refl_eq ? (bars l1):bars l1 = bars l1);
+ generalize in ⊢ (???% → ?); intro X; cases X; clear X; intro Hb;
+ [1,3: rewrite > (value_OQ_e ?? Hb); rewrite > Hv12; rewrite > Hb in Hv11 ⊢ %;
+ simplify in Hv11 ⊢ %; cases (\fst v1) in Hv11; [1,3:intros; reflexivity]
+ cases n; [1,3: intros; reflexivity] intro X; cases (not_le_Sn_O ? (le_S_S_to_le ?? X));
+ |2,4: cases (value_ok l1 input);
+ [1,5: rewrite > Hv12; rewrite > Hb; clear Hv12; simplify;
+ rewrite > H10; rewrite > Hb;
+ cut (O < \fst v1);[2,4: cases (\fst v1) in H9; intros; [2,4: autobatch]
+ cases (?:False); generalize in match H9;
+ rewrite > q_d_sym; rewrite > q_d_noabs; [2,4: assumption]
+ rewrite > H2; simplify; rewrite > q_plus_sym; rewrite > q_plus_OQ;
+ repeat rewrite > q_elim_minus;
+ intro X; lapply (q_lt_canc_plus_r ??? X) as Y;
+ apply (q_lt_le_incompat ?? Y);
+ [apply q_eq_to_le;symmetry|apply q_lt_to_le] assumption;]
+ cases (\fst v1) in H8 H9 Hcut; [1,3:intros (_ _ X); cases (not_le_Sn_O ? X)]
+ intros; clear H13; simplify;
+ rewrite > (key n n1 (b::l)); [1,4: reflexivity] rewrite < Hb;
+ [2,4: simplify in H8; apply (q_le_lt_trans ??? (q_le_plus_r ??? H8));
+ apply (q_le_lt_trans ???? H12); rewrite > H2;
+ rewrite > q_d_sym; rewrite > q_d_noabs; [2,4: assumption]
+ rewrite > (q_elim_minus (start l1) init); rewrite > q_minus_distrib;
+ rewrite > q_elim_opp; repeat rewrite > q_elim_minus;
+ rewrite < q_plus_assoc; rewrite > (q_plus_sym ? init);
+ rewrite > q_plus_assoc;rewrite < q_plus_assoc in ⊢ (? (? % ?) ?);
+ rewrite > (q_plus_sym ? init); do 2 rewrite < q_elim_minus;
+ rewrite > q_plus_minus; rewrite > q_plus_OQ;
+ rewrite > q_d_sym; rewrite > q_d_noabs;
+ [2,4: [apply q_eq_to_le; symmetry|apply q_lt_to_le] assumption]
+ apply q_eq_to_le; reflexivity;
+ |*: apply (q_le_lt_trans ??? H11);
+ rewrite > q_d_sym; rewrite > q_d_noabs;
+ [2,4: [apply q_eq_to_le; symmetry|apply q_lt_to_le] assumption]
+ generalize in match H9; rewrite > q_d_sym; rewrite > q_d_noabs;
+ [2,4: assumption]
+ rewrite > H2; intro X;
+ lapply (q_lt_inj_plus_r ?? (Qopp (start l1-init)) X) as Y; clear X;
+ rewrite < q_plus_assoc in Y; repeat rewrite < q_elim_minus in Y;
+ rewrite > q_plus_minus in Y; rewrite > q_plus_OQ in Y;
+ apply (q_le_lt_trans ???? Y);
+ rewrite > (q_elim_minus (start l1) init); rewrite > q_minus_distrib;
+ rewrite > q_elim_opp; repeat rewrite > q_elim_minus;
+ rewrite < q_plus_assoc; rewrite > (q_plus_sym ? init);
+ rewrite > q_plus_assoc;rewrite < q_plus_assoc in ⊢ (? ? (? % ?));
+ rewrite > (q_plus_sym ? init); rewrite < (q_elim_minus init);
+ rewrite > q_plus_minus; rewrite > q_plus_OQ;
+ apply q_eq_to_le; reflexivity;]
+ |2,6: rewrite > Hb; intro W; destruct W;
+ |3,7: [apply q_eq_to_le;symmetry|apply q_lt_to_le] assumption;
+ |4,8: apply (q_lt_le_trans ??? H7); rewrite > H2;
+ rewrite > q_plus_sym; rewrite < q_plus_assoc;
+ rewrite > q_plus_sym; apply q_le_inj_plus_r;
+ apply q_le_minus; apply q_eq_to_le; reflexivity;]]]
qed.