unfold Not; intros (H); destruct H;
qed.
+lemma prove_reflect : ∀P:Prop.∀b:bool.
+ (b = true → P) → (b = false → ¬P) → reflect P b.
+intros 2 (P b); cases b; intros; [left|right] auto.
+qed.
+
(* ### standard connectives/relations with reflection predicate ### *)
definition negb : bool → bool ≝ λb.match b with [ true ⇒ false | false ⇒ true].
λa,b:bool. match a with [ true ⇒ b | false ⇒ false ].
lemma andbP : ∀a,b:bool. reflect (a = true ∧ b = true) (andb a b).
-intros (a b);
-generalize in match (refl_eq ? (andb a b));
-generalize in match (andb a b) in ⊢ (? ? ? % → %); intros 1 (c);
-cases c; intros (H); [ apply reflect_true | apply reflect_false ];
-generalize in match H; clear H;
-cases a; simplify;
-[1: intros (E); rewrite > E; split; reflexivity
-|2: intros (ABS); destruct ABS
-|3: intros (E); rewrite > E; unfold Not; intros (ABS); decompose; destruct H1
-|4: intros (E); unfold Not; intros (ABS); decompose; destruct H]
+intros (a b); apply prove_reflect; cases a; cases b; simplify; intros (H);
+[1,2,3,4: rewrite > H; split; reflexivity;
+|5,6,7,8: unfold Not; intros (H1); cases H1;
+ [destruct H|destruct H3|destruct H2|destruct H2]]
qed.
lemma andbPF : ∀a,b:bool. reflect (a = false ∨ b = false) (negb (andb a b)).
-intros (a b); cases a; cases b; simplify;
-[1: apply reflect_false | *: apply reflect_true ]
-[unfold Not; intros (H); cases H; destruct H1|right|left|left] reflexivity;
+intros (a b); apply prove_reflect; cases a; cases b; simplify; intros (H);
+[1,2,3,4: rewrite > H; [1,2:right|3,4:left] reflexivity
+|5,6,7,8: unfold Not; intros (H1); [2,3,4: destruct H]; cases H1; destruct H2]
qed.
definition orb : bool → bool → bool ≝
(filter ? (sigma nat_eqType (λx.ltb x bound))
(if_p nat_eqType (λx.ltb x bound)) (iota O p)));
rewrite > (count_O fsort); [1: reflexivity]
- intros 1 (x);
+ intros 1 (x);
rewrite < (b2pT ? ? (eqP ? n ?) Enp);
cases x (y Hy); intros (ABS); clear x;
unfold segment; unfold notb; simplify;
rewrite > Hn in H; cases (H ?); reflexivity;
]]]
qed.
+
+let rec uniq (d:eqType) (l:list d) on l : bool ≝
+ match l with
+ [ nil⇒ true
+ | (cons x tl) ⇒ andb (notb (mem d x tl)) (uniq d tl)].
+
+lemma uniq_tail_OLD : ∀d:eqType.∀x:d.∀l:list d.uniq d (x::l) = true → uniq d l = true.
+intros (d x l Uxl); simplify in Uxl; cases (b2pT ? ? (andbP ? ?) Uxl); assumption;
+qed.
+
+lemma uniq_mem : ∀d:eqType.∀x:d.∀l:list d.uniq d (x::l) = true → mem d x l = false.
+intros (d x l H); simplify in H; lapply (b2pT ? ? (andbP ? ?) H) as H1; clear H;
+cases H1 (H2 H3); lapply (b2pT ? ?(negbP ?) H2); assumption;
+qed.
+
+lemma andbA : ∀a,b,c.andb a (andb b c) = andb (andb a b) c.
+intros; cases a; cases b; cases c; reflexivity; qed.
+
+lemma andbC : ∀a,b. andb a b = andb b a.
+intros; cases a; cases b; reflexivity; qed.
+
+lemma uniq_tail :
+ ∀d:eqType.∀x:d.∀l:list d. uniq d (x::l) = andb (negb (mem d x l)) (uniq d l).
+intros (d x l);
+elim l; [1: simplify; reflexivity]
+generalize in match (refl_eq ? (cmp d x t));
+generalize in match (cmp d x t) in ⊢ (? ? ? % → %); intros 1 (b); cases b; clear b;
+intros (E); simplify ; rewrite > E; simplify; [1: reflexivity;]
+rewrite > andbA; rewrite > andbC in ⊢ (? ? (? % ?) ?); rewrite < andbA;
+rewrite < H; rewrite > andbC in ⊢ (? ? ? (? % ?)); rewrite < andbA;
+reflexivity;
+qed.
+
+lemma count_O_mem : ∀d:eqType.∀x:d.∀l:list d.ltb O (count d (cmp d x) l) = mem d x l.
+intros 3 (d x l); elim l [reflexivity]
+simplify; fold simplify (mem d x l1); fold simplify (count d (cmp d x) l1);
+rewrite < H; cases (cmp d x t); simplify; reflexivity;
+qed.
+
+lemma uniqP : ∀d:eqType.∀l:list d.
+ reflect (∀x:d.mem d x l = true → count d (cmp d x) l = (S O)) (uniq d l).
+intros (d l); apply prove_reflect; elim l; [1: destruct H1 | 3: destruct H]
+[1: generalize in match H2; simplify in H2; fold simplify (orb (cmp d x t) (mem d x l1)) in H2;
+ (* lapply (uniq_tail ? ? ? H1) as Ul1; *)
+ lapply (b2pT ? ? (orbP ? ?) H2) as H3; clear H2;
+ cases H3; clear H3; intros;
+ [2: lapply (uniq_mem ? ? ? H1) as H4;
+ generalize in match (refl_eq ? (cmp d x t));
+ generalize in match (cmp d x t) in ⊢ (? ? ? % → %); intros 1 (b); cases b; clear b;
+ intros (H5);
+ [1: simplify; rewrite > H5; simplify; fold simplify (count d (cmp d x) l1);
+ rewrite > count_O; [1:reflexivity]
+ intros (y Hy); rewrite > (b2pT ? ? (eqP d ? ?) H5) in H2 H3 H4 ⊢ %;
+ clear H5; clear x; rewrite > H2 in H4; destruct H4;
+ |2: simplify; rewrite > H5; simplify;
+ fold simplify (count d (cmp d x) (l1));
+ apply H; rewrite > uniq_tail in H1;
+ cases (b2pT ? ? (andbP ? ?) H1);
+ assumption;]
+ |1: simplify; rewrite > H2; simplify;
+ fold simplify (count d (cmp d x) l1);
+ rewrite > count_O; [1:reflexivity]
+ intros (y Hy); rewrite > (b2pT ? ? (eqP d ? ?) H2) in H3 ⊢ %;
+ clear H2; clear x;
+ lapply (uniq_mem ? ? ? H1) as H4;
+ generalize in match (refl_eq ? (cmp d t y));
+ generalize in match (cmp d t y) in ⊢ (? ? ? % → %); intros 1 (b); cases b; clear b;
+ [1: intros (E); rewrite > (b2pT ? ? (eqP d ? ?) E) in H4;
+ rewrite > H4 in Hy; destruct Hy;
+ |2:intros; reflexivity]]
+|2: rewrite > uniq_tail in H1;
+ generalize in match (refl_eq ? (uniq d l1));
+ generalize in match (uniq d l1) in ⊢ (? ? ? % → %); intros 1 (b); cases b; clear b;
+ [1: intros (E); rewrite > E in H1; rewrite > andbC in H1; simplify in H1;
+ unfold Not; intros (A); lapply (A t) as A';
+ [1: simplify in A';
+ rewrite > cmp_refl in A'; simplify in A';
+ destruct A'; clear A'; fold simplify (count d (cmp d t) l1) in Hcut;
+ rewrite < count_O_mem in H1;
+ rewrite > Hcut in H1; destruct H1;
+ |2: simplify; rewrite > cmp_refl; reflexivity;]
+ |2: intros (Ul1); lapply (H Ul1); unfold Not; intros (A); apply Hletin;
+ intros (r Mrl1); lapply (A r); [2: simplify; rewrite > Mrl1; cases (cmp d r t); reflexivity]
+ generalize in match (refl_eq ? (cmp d r t));
+ generalize in match (cmp d r t) in ⊢ (? ? ? % → %); intros 1 (b); cases b; clear b;
+ [1: intros (E); simplify in Hletin1; rewrite > E in Hletin1;
+ simplify in Hletin1; fold simplify (count d (cmp d r) l1) in Hletin1;
+ destruct Hletin1;
+ rewrite < count_O_mem in Mrl1;
+ rewrite > Hcut in Mrl1;
+ destruct Mrl1;
+ |2: intros; simplify in Hletin1; rewrite > H2 in Hletin1;
+ simplify in Hletin1; apply (Hletin1);]]]
+qed.
+
+lemma mem_finType : ∀d:finType.∀x:d. mem d x (enum d) = true.
+intros 1 (d); cases d; simplify; intros; rewrite < count_O_mem;
+rewrite > H; reflexivity;
+qed.
+
+lemma uniq_fintype_enum : ∀d:finType. uniq d (enum d) = true.
+intros; cases d; simplify; apply (p2bT ? ? (uniqP ? ?)); intros; apply H;
+qed.
+
+lemma sub_enumP : ∀d:finType.∀p:d→bool.∀x:sub_eqType d p.
+ count (sub_eqType d p) (cmp ? x) (filter ? ? (if_p ? p) (enum d)) = (S O).
+intros (d p x); cases x (t Ht); clear x;
+generalize in match (mem_finType d t);
+generalize in match (uniq_fintype_enum d);
+elim (enum d); [1:destruct H1]
+simplify; fold simplify (filter d (sigma d p) (if_p d p) l);
+cases (in_sub_eq d p t1); simplify in ⊢ (? ? (? ? ? %) ?);
+ [simplify; fold simplify (count (sub_eqType d p) (cmp (sub_eqType d p) {t,Ht})
+ (filter d (sigma d p) (if_p d p) l));
+ generalize in match H3; clear H3; cases s (r Hr); clear s;
+ simplify; intros (Ert1); generalize in match Hr; clear Hr;
+ rewrite > Ert1; clear Ert1; clear r; intros (Ht1);
+ unfold sub_eqType in ⊢ (? ? match ? (% ? ?) ? ? with [true⇒ ?|false⇒ ?] ?);
+ simplify; generalize in match (refl_eq ? (cmp d t t1));
+ generalize in match (cmp d t t1) in ⊢ (? ? ? % → %); intros 1 (b); cases b; clear b;
+ intros (Ett1); simplify;
+ [1: cut (count (sub_eqType d p) (cmp (sub_eqType d p) {t,Ht})
+ (filter d (sigma d p) (if_p d p) l) = O); [1:rewrite > Hcut; reflexivity]
+ lapply (uniq_mem ? ? ? H1);
+ generalize in match Ht;
+ rewrite > (b2pT ? ? (eqP d ? ?) Ett1); intros (Ht1'); clear Ht1;
+ generalize in match Hletin; elim l; [1: reflexivity]
+ simplify; cases (in_sub_eq d p t2); simplify;
+ [1: generalize in match H5; cases s; simplify; intros; clear H5;
+ unfold sub_eqType in ⊢ (? ? match ? (% ? ?) ? ? with [true⇒ ?|false⇒ ?] ?);
+ simplify; rewrite > H7; simplify in H4;
+ generalize in match H4; clear H4;
+ generalize in match (refl_eq ? (cmp d t1 t2));
+ generalize in match (cmp d t1 t2) in ⊢ (? ? ? % → %); intros 1 (b); cases b; clear b;
+ simplify; intros; [1: destruct H5] apply H3; assumption
+ |2:apply H3;
+ generalize in match H4; clear H4; simplify;
+ generalize in match (refl_eq ? (cmp d t1 t2));
+ generalize in match (cmp d t1 t2) in ⊢ (? ? ? % → %); intros 1 (b); cases b; clear b;
+ simplify; intros; [1: destruct H6] assumption;]
+ |2: apply H; [ rewrite > uniq_tail in H1; cases (b2pT ? ? (andbP ? ?) H1); assumption]
+ simplify in H2; rewrite > Ett1 in H2; simplify in H2; assumption]
+ | rewrite > H; [1:reflexivity|2: rewrite > uniq_tail in H1; cases (b2pT ? ? (andbP ? ?) H1); assumption]
+ simplify in H2; generalize in match H2; generalize in match (refl_eq ? (cmp d t t1));
+ generalize in match (cmp d t t1) in ⊢ (? ? ? % → %); intros 1 (b); cases b; clear b;
+ intros (E);
+ [lapply (b2pT ? ? (eqP d ? ?) E); clear H; rewrite > Hletin in Ht;
+ rewrite > Ht in H3; destruct H3;
+ |assumption]]
+qed.
+
+definition sub_finType : ∀d:finType.∀p:d→bool.finType ≝
+ λd:finType.λp:d→bool. mk_finType (sub_eqType d p) (filter ? ? (if_p ? p) (enum d)) (sub_enumP d p).
+