[ apply (eq_gen_succ_zero ? ? H)
| lapply linear eq_gen_succ_succ to H2 as H0.
subst.
- apply ex_intro; [|auto new] (**)
+ apply ex_intro; [|auto new timeout=30] (**)
].
qed.
[ apply (eq_gen_succ_zero ? ? H)
| lapply linear eq_gen_succ_succ to H2 as H0.
lapply linear eq_gen_succ_succ to H3 as H2.
- subst. auto new
+ subst. auto new timeout=30
].
qed.
theorem nle_gen_zero_2: \forall x. x <= zero \to x = zero.
intros 1. elim x; clear x; intros;
- [ auto new
+ [ auto new timeout=30
| apply (nle_gen_succ_zero ? ? H1)
].
qed.
theorem nle_gen_succ_2: \forall y,x. x <= succ y \to
x = zero \lor \exists z. x = succ z \land z <= y.
intros 2; elim x; clear x; intros;
- [ auto new
+ [ auto new timeout=30
| lapply linear nle_gen_succ_succ to H1.
- right. apply ex_intro; [|auto new] (**)
+ right. apply ex_intro; [|auto new timeout=30] (**)
].
qed.