let module U = UriManager in
let module R = CicReduction in
let module C = Cic in
- let (curi,metasenv,_,_) = proof in
+ let (curi,metasenv,proofbo,proofty) = proof in
let metano,context,ty = CicUtil.lookup_meta goal metasenv in
let termty = T.type_of_aux' metasenv context term in
let uri,exp_named_subst,typeno,args =
in
let eliminator_ref = C.Const (eliminator_uri,exp_named_subst) in
let ety = T.type_of_aux' metasenv context eliminator_ref in
- let newmeta = new_meta_of_proof ~proof in
- let (econclusion,newmetas,arguments,lastmeta) =
- new_metasenv_for_apply newmeta proof context ety
+ let rec find_args_no =
+ function
+ C.Prod (_,_,t) -> 1 + find_args_no t
+ | C.Cast (s,_) -> find_args_no s
+ | C.LetIn (_,_,t) -> 0 + find_args_no t
+ | _ -> 0
in
- (* Here we assume that we have only one inductive hypothesis to *)
- (* eliminate and that it is the last hypothesis of the theorem. *)
- (* A better approach would be fingering the hypotheses in some *)
- (* way. *)
- let meta_of_corpse =
- let (_,canonical_context,_) =
- CicUtil.lookup_meta (lastmeta - 1) newmetas
+ let args_no = find_args_no ety in
+ let term_to_refine =
+ let rec make_tl base_case =
+ function
+ 0 -> [base_case]
+ | n -> (C.Implicit None)::(make_tl base_case (n - 1))
in
- let irl =
- CicMkImplicit.identity_relocation_list_for_metavariable
- canonical_context
- in
- Cic.Meta (lastmeta - 1, irl)
- in
- let newmetasenv = newmetas @ metasenv in
- let subst1,newmetasenv' =
- CicUnification.fo_unif newmetasenv context term meta_of_corpse
+ C.Appl (eliminator_ref :: make_tl term (args_no - 1))
in
- let ueconclusion = CicMetaSubst.apply_subst subst1 econclusion in
- (* The conclusion of our elimination principle is *)
- (* (?i farg1 ... fargn) *)
- (* The conclusion of our goal is ty. So, we can *)
- (* eta-expand ty w.r.t. farg1 .... fargn to get *)
- (* a new ty equal to (P farg1 ... fargn). Now *)
- (* ?i can be instantiated with P and we are ready *)
- (* to refine the term. *)
- let emeta, fargs =
- match ueconclusion with
- C.Appl ((C.Meta (emeta,_))::fargs) -> emeta,fargs
- | C.Meta (emeta,_) -> emeta,[]
- | _ -> raise NotTheRightEliminatorShape
+ let metasenv', term_to_refine' =
+ CicMkImplicit.expand_implicits metasenv context term_to_refine in
+ let refined_term,_,metasenv'' =
+ CicRefine.type_of_aux' metasenv' context term_to_refine'
+ in
+ let new_goals =
+ ProofEngineHelpers.compare_metasenvs
+ ~oldmetasenv:metasenv ~newmetasenv:metasenv''
in
- let ty' = CicMetaSubst.apply_subst subst1 ty in
- let eta_expanded_ty =
- (*CSC: newmetasenv' era metasenv ??????????? *)
- List.fold_left (eta_expand newmetasenv' context) ty' fargs
+ let proof' = curi,metasenv'',proofbo,proofty in
+ let proof'', new_goals' =
+ apply_tactic (apply_tac ~term:refined_term) (proof',goal)
in
- let subst2,newmetasenv'' =
- (*CSC: passo newmetasenv', ma alcune variabili sono gia' state sostituite
- da subst1!!!! Dovrei rimuoverle o sono innocue?*)
- CicUnification.fo_unif
- newmetasenv' context ueconclusion eta_expanded_ty
+ (* The apply_tactic can have closed some of the new_goals *)
+ let patched_new_goals =
+ let (_,metasenv''',_,_) = proof'' in
+ List.filter
+ (function i -> List.exists (function (j,_,_) -> j=i) metasenv'''
+ ) new_goals @ new_goals'
in
- let in_subst_domain i =
- let eq_to_i = function (j,_) -> i=j in
- List.exists eq_to_i subst1 ||
- List.exists eq_to_i subst2
- in
- (* When unwinding the META that corresponds to the elimination *)
- (* predicate (which is emeta), we must also perform one-step *)
- (* beta-reduction. apply_subst doesn't need the context. Hence *)
- (* the underscore. *)
- let apply_subst _ t =
- let t' = CicMetaSubst.apply_subst subst1 t in
- CicMetaSubst.apply_subst_reducing
- (Some (emeta,List.length fargs)) subst2 t'
- in
- let old_uninstantiatedmetas,new_uninstantiatedmetas =
- classify_metas newmeta in_subst_domain apply_subst
- newmetasenv''
- in
- let arguments' = List.map (apply_subst context) arguments in
- let bo' = Cic.Appl (eliminator_ref::arguments') in
- let newmetasenv''' =
- new_uninstantiatedmetas@old_uninstantiatedmetas
- in
- let (newproof, newmetasenv'''') =
- (* When unwinding the META that corresponds to the *)
- (* elimination predicate (which is emeta), we must *)
- (* also perform one-step beta-reduction. *)
- (* The only difference w.r.t. apply_subst is that *)
- (* we also substitute metano with bo'. *)
- (*CSC: Nota: sostituire nuovamente subst1 e' superfluo, *)
- (*CSC: no? *)
- let apply_subst' t =
- let t' = CicMetaSubst.apply_subst subst1 t in
- CicMetaSubst.apply_subst_reducing
- (Some (emeta,List.length fargs))
- ((metano,bo')::subst2) t'
- in
- subst_meta_and_metasenv_in_proof
- proof metano apply_subst' newmetasenv'''
- in
- (newproof,
- List.map (function (i,_,_) -> i) new_uninstantiatedmetas)
+ proof'', patched_new_goals
in
mk_tactic (elim_tac ~term)
;;