(* Lemma 3.2 *)
alias symbol "pi1" = "sigma pi1".
-lemma foo:
+lemma restric_uniform_convergence:
∀O:ordered_uniform_space.∀l,u:O.
∀x:{[l,u]}.
∀a:sequence {[l,u]}.
apply (restrict ? l u ??? H4); apply (Hm ? H1);
qed.
+definition order_continuity ≝
+ λC:ordered_uniform_space.∀a:sequence C.∀x:C.
+ (a ↑ x → a uniform_converges x) ∧ (a ↓ x → a uniform_converges x).
+
|2: simplify; apply (le_transitive ???? Lax Lxb);
|3: simplify; repeat split; try assumption;
[1: apply (le_transitive ???? Lax Lxb);
- |2: (* prove le_reflexive *) intro X; cases (os_coreflexive ?? X)]]
+ |2: intro X; cases (os_coreflexive ?? X)]]
|1: apply HW; exists[apply l] simplify; split;
[1: apply (us_phi1 ?? Gw); unfold; apply eq_reflexive;
|2: apply Hma; rewrite > sym_plus in H1; apply (le_w_plus mb); assumption;]]