term])
and acontext2pres is_top_down ac continuation indent in_bu_conversion =
- List.fold_right
- (fun p continuation ->
+ let rec aux =
+ function
+ [] -> continuation
+ | p::tl ->
+ let continuation = aux tl in
+ (* Applicative context get flattened and the "body" of a BU_Conversion
+ is put in the applicative context. Thus two different situations
+ are possible:
+ {method = "BU_Conversion"; applicative_context=[p1; ...; pn]}
+ {method = xxx; applicative_context =
+ [ p1; ...; pn; {method="BU_Conversion"} ; p_{n+1}; ... ; pm ]}
+ In both situations only pn must be processed in in_bu_conversion
+ mode
+ *)
+ let in_bu_conversion =
+ match tl with
+ [] -> in_bu_conversion
+ | p::_ -> p.Con.proof_conclude.Con.conclude_method = "BU_Conversion"
+ in
let hd =
if indent then
B.indent (proof2pres is_top_down p in_bu_conversion)
else
proof2pres is_top_down p in_bu_conversion
in
- B.V([Some "helm","xref",p.Con.proof_id],
- [B.H([Some "helm","xref","ace_"^p.Con.proof_id],[hd]);
- continuation])) ac continuation
+ B.V([Some "helm","xref",p.Con.proof_id],
+ [B.H([Some "helm","xref","ace_"^p.Con.proof_id],[hd]);
+ continuation])
+ in aux ac
and conclude2pres ?skip_initial_lambdas_internal is_top_down name conclude indent omit_conclusion omit_dot =
let tconclude_body =
B.Text([],"")
else if omit_conclusion then
B.H([], [B.b_kw "done" ; B.Text([],".") ])
- else B.b_hv []
- ((if not is_top_down || omit_dot then [make_concl "we proved"
- concl; B.Text([],if not is_top_down then "(previous)" else "")]
- else [B.b_kw "done"]) @ if not omit_dot then [B.Text([],".")] else [])
+ else
+ B.b_hv []
+ ((if not is_top_down || omit_dot then
+ (make_concl "we proved" concl) ::
+ if not is_top_down then
+ [B.b_space; B.Text([],"(previous)")]
+ else []
+ else [B.b_kw "done"]
+ ) @ if not omit_dot then [B.Text([],".")] else [])
in
B.V ([], prequel @ [conclude_body; ann_concl])
| _ -> conclude_aux ?skip_initial_lambdas_internal conclude
| _ -> assert false in
let hyps = List.map make_hyp indhyps in
text::hyps) in
- (* let acontext =
- acontext2pres_old p.Con.proof_apply_context true in *)
let body =
conclude2pres true p.Con.proof_name p.Con.proof_conclude true true false in
let presacontext =
[ B.Object ([], P.Mi([],lemma.Con.lemma_name)); B.skip;
B.b_kw "is contradictory, hence" ]
| _ -> assert false) in
- (* let body = proof2pres {proof with Con.proof_context = tl} false in *)
make_row arg proof_conclusion
and andind conclude =
B.Text([],")");
B.skip;
term2pres hyp2.Con.dec_type]) in
- (* let body = proof2pres {proof with Con.proof_context = tl} false in *)
- let body= conclude2pres false proof.Con.proof_name proof.Con.proof_conclude false true false in
+ let body =
+ conclude2pres false proof.Con.proof_name proof.Con.proof_conclude
+ false true false in
let presacontext =
acontext2pres false proof.Con.proof_apply_context body false false
in
B.Text([],")");
B.skip;
term2pres hyp.Con.dec_type]) in
- (* let body = proof2pres {proof with Con.proof_context = tl} false in *)
- let body= conclude2pres false proof.Con.proof_name proof.Con.proof_conclude false true false in
+ let body =
+ conclude2pres false proof.Con.proof_name proof.Con.proof_conclude
+ false true false in
let presacontext =
acontext2pres false proof.Con.proof_apply_context body false false
in