include "lambda-delta/substitution/thin.ma".
-(* SINGLE STEP PARALLEL REDUCTION *******************************************)
+(* SINGLE STEP PARALLEL REDUCTION ON TERMS **********************************)
inductive pr: lenv → term → term → Prop ≝
| pr_sort : ∀L,k. pr L (⋆k) (⋆k)
| pr_tau : ∀L,V,T1,T2. pr L T1 T2 → pr L (𝕚{Cast} V. T1) T2
.
-interpretation "single step parallel reduction" 'PR L T1 T2 = (pr L T1 T2).
+interpretation
+ "single step parallel reduction (term)"
+ 'PR L T1 T2 = (pr L T1 T2).
-(* The three main lemmas on reduction ***************************************)
+(* The basic properties *****************************************************)
-lemma pr_inv_lift: ∀L,T1,T2. L ⊢ T1 ⇒ T2 →
- ∀d,e,K. ↓[d,e] L ≡ K → ∀U1. ↑[d,e] U1 ≡ T1 →
- ∃∃U2. ↑[d,e] U2 ≡ T2 & K ⊢ U1 ⇒ U2.
-#L #T1 #T2 #H elim H -H L T1 T2
-[ #L #k #d #e #K #_ #U1 #HU1
- lapply (lift_inv_sort2 … HU1) -HU1 #H destruct -U1 /2/
-| #L #i #d #e #K #_ #U1 #HU1
- lapply (lift_inv_lref2 … HU1) -HU1 * * #Hid #H destruct -U1 /3/
-| #L #I #V1 #V2 #T1 #T2 #_ #_ #IHV12 #IHT12 #d #e #K #HLK #X #HX
- lapply (lift_inv_bind2 … HX) -HX * #V0 #T0 #HV01 #HT01 #HX destruct -X;
- elim (IHV12 … HLK … HV01) -IHV12 #V3 #HV32 #HV03
- elim (IHT12 … HT01) -IHT12 HT01 [2,3: -HV32 HV03 /3/] -HLK HV01 /3 width=5/
-| #L #I #V1 #V2 #T1 #T2 #_ #_ #IHV12 #IHT12 #d #e #K #HLK #X #HX
- elim (lift_inv_flat2 … HX) -HX #V0 #T0 #HV01 #HT01 #HX destruct -X;
- elim (IHV12 … HLK … HV01) -IHV12 HV01 #V3 #HV32 #HV03
- elim (IHT12 … HLK … HT01) -IHT12 HT01 HLK /3 width=5/
-| #L #V1 #V2 #W1 #T1 #T2 #_ #_ #IHV12 #IHT12 #d #e #K #HLK #X #HX
- elim (lift_inv_flat2 … HX) -HX #V0 #Y #HV01 #HY #HX destruct -X;
- elim (lift_inv_bind2 … HY) -HY #W0 #T0 #HW01 #HT01 #HY destruct -Y;
- elim (IHV12 … HLK … HV01) -IHV12 HV01 #V3 #HV32 #HV03
- elim (IHT12 … HT01) -IHT12 HT01
- [3: -HV32 HV03 @(thin_skip … HLK) /2/ |2: skip ] (**) (* /3 width=5/ is too slow *)
- -HLK HW01
- /3 width=5/
-| #L #K0 #V1 #V2 #V0 #i #HLK0 #HV12 #HV20 #IHV12 #d #e #K #HLK #X #HX
- lapply (lift_inv_lref2 … HX) -HX * * #Hid #HX destruct -X;
- [ -HV12;
- elim (thin_conf_lt … HLK … HLK0 Hid) -HLK HLK0 L #L #V3 #HKL #HK0L #HV31
- elim (IHV12 … HK0L … HV31) -IHV12 HK0L HV31 #V4 #HV42 #HV34
- elim (lift_trans_le … HV42 … HV20 ?) -HV42 HV20 V2 // #V2 #HV42
- >arith5 // -Hid #HV20
- @(ex2_1_intro … V2) /2 width=6/ (**) (* /3 width=8/ is slow *)
- | -IHV12;
- lapply (thin_conf_ge … HLK … HLK0 Hid) -HLK HLK0 L #HK
- elim (lift_free … HV20 d (i - e + 1) ? ? ?) -HV20 /2/
- >arith3 /2/ -Hid /3 width=8/ (**) (* just /3 width=8/ is a bit slow *)
- ]
-| #L #V #V1 #V2 #W1 #W2 #T1 #T2 #_ #HV2 #_ #_ #IHV12 #IHW12 #IHT12 #d #e #K #HLK #X #HX
- elim (lift_inv_flat2 … HX) -HX #V0 #Y #HV01 #HY #HX destruct -X;
- elim (lift_inv_bind2 … HY) -HY #W0 #T0 #HW01 #HT01 #HY destruct -Y;
- elim (IHV12 ? ? ? HLK ? HV01) -IHV12 HV01 #V3 #HV32 #HV03
- elim (IHW12 ? ? ? HLK ? HW01) -IHW12 #W3 #HW32 #HW03
- elim (IHT12 … HT01) -IHT12 HT01
- [3: -HV2 HV32 HV03 HW32 HW03 @(thin_skip … HLK) /2/ |2: skip ] (**) (* /3/ is too slow *)
- -HLK HW01 #T3 #HT32 #HT03
- elim (lift_trans_le … HV32 … HV2 ?) -HV32 HV2 V2 // #V2 #HV32 #HV2
- @(ex2_1_intro … (𝕓{Abbr}W3.𝕗{Appl}V2.T3)) /3/ (**) (* /4/ loops *)
-| #L #V #T #T1 #T2 #HT1 #_ #IHT12 #d #e #K #HLK #X #HX
- elim (lift_inv_bind2 … HX) -HX #V0 #T0 #_ #HT0 #H destruct -X;
- elim (lift_conf_rev … HT1 … HT0 ?) -HT1 HT0 T // #T #HT0 #HT1
- elim (IHT12 … HLK … HT1) -IHT12 HLK HT1 /3 width=5/
-| #L #V #T1 #T2 #_ #IHT12 #d #e #K #HLK #X #HX
- elim (lift_inv_flat2 … HX) -HX #V0 #T0 #_ #HT01 #H destruct -X;
- elim (IHT12 … HLK … HT01) -IHT12 HLK HT01 /3/
-]
-qed.
-
-(* this may be moved *)
lemma pr_refl: ∀T,L. L ⊢ T ⇒ T.
#T elim T -T //
#I elim I -I /2/
qed.
+(*
+lemma subst_pr: ∀d,e,L,T1,U2. L ⊢ ↓[d,e] T1 ≡ U2 → ∀T2. ↑[d,e] U2 ≡ T2 →
+ L ⊢ T1 ⇒ T2.
+#d #e #L #T1 #U2 #H elim H -H d e L T1 U2
+[ #L #k #d #e #X #HX lapply (lift_inv_sort1 … HX) -HX #HX destruct -X //
+| #L #i #d #e #Hid #X #HX lapply (lift_inv_sort1 … HX) -HX #HX destruct -X //
+| #L #V1 #V2 #e #HV12 * #V #HV2 #HV1
+ elim (lift_total 0 1 V1) #W1 #HVW1
+ @(ex2_1_intro … W1)
+ [
+ | /2 width=6/
+
+*)
\ No newline at end of file
interpretation "thinning" 'RSubst L1 d e L2 = (thin L1 d e L2).
+(* the basic inversion lemmas ***********************************************)
+
+lemma thin_inv_skip2_aux: ∀d,e,L1,L2. ↓[d, e] L1 ≡ L2 → 0 < d →
+ ∀I,K2,V2. L2 = K2. 𝕓{I} V2 →
+ ∃∃K1,V1. ↓[d - 1, e] K1 ≡ K2 &
+ K1 ⊢ ↓[d - 1, e] V1 ≡ V2 &
+ L1 = K1. 𝕓{I} V1.
+#d #e #L1 #L2 #H elim H -H d e L1 L2
+[ #L #H elim (lt_false … H)
+| #L1 #L2 #I #V #e #_ #_ #H elim (lt_false … H)
+| #L1 #X #Y #V1 #Z #d #e #HL12 #HV12 #_ #_ #I #L2 #V2 #H destruct -X Y Z;
+ /2 width=5/
+]
+qed.
+
+lemma thin_inv_skip2: ∀d,e,I,L1,K2,V2. ↓[d, e] L1 ≡ K2. 𝕓{I} V2 → 0 < d →
+ ∃∃K1,V1. ↓[d - 1, e] K1 ≡ K2 & K1 ⊢ ↓[d - 1, e] V1 ≡ V2 &
+ L1 = K1. 𝕓{I} V1.
+/2/ qed.
+
(* the main properties ******************************************************)
axiom thin_conf_ge: ∀d1,e1,L,L1. ↓[d1,e1] L ≡ L1 →
∀e2,K2,I,V2. ↓[0,e2] L ≡ K2. 𝕓{I} V2 →
e2 < d1 → let d ≝ d1 - e2 - 1 in
∃∃K1,V1. ↓[0,e2] L1 ≡ K1. 𝕓{I} V1 & ↓[d,e1] K2 ≡ K1 & ↑[d,e1] V1 ≡ V2.
+
+axiom thin_trans_le: ∀d1,e1,L1,L. ↓[d1, e1] L1 ≡ L →
+ ∀e2,L2. ↓[0, e2] L ≡ L2 → e2 ≤ d1 →
+ ∃∃L0. ↓[0, e2] L1 ≡ L0 & ↓[d1 - e2, e1] L0 ≡ L2.
+
+axiom thin_trans_ge: ∀d1,e1,L1,L. ↓[d1, e1] L1 ≡ L →
+ ∀e2,L2. ↓[0, e2] L ≡ L2 → d1 ≤ e2 → ↓[0, e1 + e2] L1 ≡ L2.