[ O ⇒ [ ]
| S m ⇒ a::(make_list A a m)
].
-
-(* ******** labelled reflexive and transitive closure ************)
-
-inductive lstar (A:Type[0]) (B:Type[0]) (R: A→relation B): list A → relation B ≝
-| lstar_nil : ∀b. lstar A B R ([]) b b
-| lstar_cons: ∀a,b1,b. R a b1 b →
- ∀l,b2. lstar A B R l b b2 → lstar A B R (a::l) b1 b2
-.
-
-lemma lstar_step: ∀A,B,R,a,b1,b2. R a b1 b2 → lstar A B R ([a]) b1 b2.
-/2 width=3/
-qed.
-
-lemma lstar_inv_nil: ∀A,B,R,l,b1,b2. lstar A B R l b1 b2 → [] = l → b1 = b2.
-#A #B #R #l #b1 #b2 * -l -b1 -b2 //
-#a #b1 #b #_ #l #b2 #_ #H destruct
-qed-.
-
-lemma lstar_inv_cons: ∀A,B,R,l,b1,b2. lstar A B R l b1 b2 →
- ∀a0,l0. a0::l0 = l →
- ∃∃b. R a0 b1 b & lstar A B R l0 b b2.
-#A #B #R #l #b1 #b2 * -l -b1 -b2
-[ #b #a0 #l0 #H destruct
-| #a #b1 #b #Hb1 #l #b2 #Hb2 #a0 #l0 #H destruct /2 width=3/
-]
-qed-.
-
-lemma lstar_inv_step: ∀A,B,R,a,b1,b2. lstar A B R ([a]) b1 b2 → R a b1 b2.
-#A #B #R #a #b1 #b2 #H
-elim (lstar_inv_cons ?????? H ???) -H [4: // |2,3: skip ] #b #Hb1 #H (**) (* simplify line *)
-<(lstar_inv_nil ?????? H ?) -H // (**) (* simplify line *)
-qed-.
-
-theorem lstar_singlevalued: ∀A,B,R. (∀a. singlevalued ?? (R a)) →
- ∀l. singlevalued … (lstar A B R l).
-#A #B #R #HR #l #b #c1 #H elim H -l -b -c1
-[ /2 width=5 by lstar_inv_nil/
-| #a #b #b1 #Hb1 #l #c1 #_ #IHbc1 #c2 #H
- elim (lstar_inv_cons ?????? H ???) -H [4: // |2,3: skip ] #b2 #Hb2 #Hbc2 (**) (* simplify line *)
- lapply (HR … Hb1 … Hb2) -b #H destruct /2 width=1/
-]
-qed-.
-
-theorem lstar_trans: ∀A,B,R,l1,b1,b. lstar A B R l1 b1 b →
- ∀l2,b2. lstar A B R l2 b b2 → lstar A B R (l1@l2) b1 b2.
-#A #B #R #l1 #b1 #b #H elim H -l1 -b1 -b normalize // /3 width=3/
-qed-.
--- /dev/null
+(*
+ ||M|| This file is part of HELM, an Hypertextual, Electronic
+ ||A|| Library of Mathematics, developed at the Computer Science
+ ||T|| Department of the University of Bologna, Italy.
+ ||I||
+ ||T||
+ ||A||
+ \ / This file is distributed under the terms of the
+ \ / GNU General Public License Version 2
+ V_______________________________________________________________ *)
+
+include "basics/lists/list.ma".
+
+(* labelled reflexive and transitive closure ********************************)
+
+inductive lstar (A:Type[0]) (B:Type[0]) (R: A→relation B): list A → relation B ≝
+| lstar_nil : ∀b. lstar A B R ([]) b b
+| lstar_cons: ∀a,b1,b. R a b1 b →
+ ∀l,b2. lstar A B R l b b2 → lstar A B R (a::l) b1 b2
+.
+
+fact lstar_ind_l_aux: ∀A,B,R,b2. ∀P:relation2 (list A) B.
+ P ([]) b2 →
+ (∀a,l,b1,b. R a b1 b → lstar … R l b b2 → P l b → P (a::l) b1) →
+ ∀l,b1,b. lstar … R l b1 b → b = b2 → P l b1.
+#A #B #R #b2 #P #H1 #H2 #l #b1 #b #H elim H -b -b1
+[ #b #H destruct /2 width=1/
+| #a #b #b0 #Hb0 #l #b1 #Hb01 #IH #H destruct /3 width=4/
+]
+qed-.
+
+(* imporeved version of lstar_ind with "left_parameter" *)
+lemma lstar_ind_l: ∀A,B,R,b2. ∀P:relation2 (list A) B.
+ P ([]) b2 →
+ (∀a,l,b1,b. R a b1 b → lstar … R l b b2 → P l b → P (a::l) b1) →
+ ∀l,b1. lstar … R l b1 b2 → P l b1.
+#A #B #R #b2 #P #H1 #H2 #l #b1 #Hb12
+@(lstar_ind_l_aux … H1 H2 … Hb12) //
+qed-.
+
+lemma lstar_step: ∀A,B,R,a,b1,b2. R a b1 b2 → lstar A B R ([a]) b1 b2.
+/2 width=3/
+qed.
+
+lemma lstar_inv_nil: ∀A,B,R,l,b1,b2. lstar A B R l b1 b2 → [] = l → b1 = b2.
+#A #B #R #l #b1 #b2 * -l -b1 -b2 //
+#a #b1 #b #_ #l #b2 #_ #H destruct
+qed-.
+
+lemma lstar_inv_cons: ∀A,B,R,l,b1,b2. lstar A B R l b1 b2 →
+ ∀a0,l0. a0::l0 = l →
+ ∃∃b. R a0 b1 b & lstar A B R l0 b b2.
+#A #B #R #l #b1 #b2 * -l -b1 -b2
+[ #b #a0 #l0 #H destruct
+| #a #b1 #b #Hb1 #l #b2 #Hb2 #a0 #l0 #H destruct /2 width=3/
+]
+qed-.
+
+lemma lstar_inv_step: ∀A,B,R,a,b1,b2. lstar A B R ([a]) b1 b2 → R a b1 b2.
+#A #B #R #a #b1 #b2 #H
+elim (lstar_inv_cons ?????? H ???) -H [4: // |2,3: skip ] #b #Hb1 #H (**) (* simplify line *)
+<(lstar_inv_nil ?????? H ?) -H // (**) (* simplify line *)
+qed-.
+
+theorem lstar_singlevalued: ∀A,B,R. (∀a. singlevalued ?? (R a)) →
+ ∀l. singlevalued … (lstar A B R l).
+#A #B #R #HR #l #b #c1 #H @(lstar_ind_l ????????? H) -l -b
+[ /2 width=5 by lstar_inv_nil/
+| #a #l #b #b1 #Hb1 #_ #IHbc1 #c2 #H
+ elim (lstar_inv_cons ?????? H ???) -H [4: // |2,3: skip ] #b2 #Hb2 #Hbc2 (**) (* simplify line *)
+ lapply (HR … Hb1 … Hb2) -b #H destruct /2 width=1/
+]
+qed-.
+
+theorem lstar_trans: ∀A,B,R,l1,b1,b. lstar A B R l1 b1 b →
+ ∀l2,b2. lstar A B R l2 b b2 → lstar A B R (l1@l2) b1 b2.
+#A #B #R #l1 #b1 #b #H @(lstar_ind_l ????????? H) -l1 -b1 normalize // /3 width=3/
+qed-.