--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+set "baseuri" "cic:/matita/nat/sqrt/".
+
+include "nat/times.ma".
+include "nat/compare.ma".
+include "nat/log.ma".
+
+definition sqrt \def
+ \lambda n.max n (\lambda x.leb (x*x) n).
+
+theorem le_sqrt_to_le_times_l : \forall m,n.n \leq sqrt m \to n*n \leq m.
+intros;apply (trans_le ? (sqrt m * sqrt m))
+ [apply le_times;assumption
+ |apply leb_true_to_le;apply (f_max_true (λx:nat.leb (x*x) m) m);
+ apply (ex_intro ? ? O);split
+ [apply le_O_n
+ |simplify;reflexivity]]
+qed.
+
+theorem lt_sqrt_to_le_times_l : \forall m,n.n < sqrt m \to n*n < m.
+intros;apply (trans_le ? (sqrt m * sqrt m))
+ [apply (trans_le ? (S n * S n))
+ [simplify in \vdash (? ? %);apply le_S_S;apply (trans_le ? (n * S n))
+ [apply le_times_r;apply le_S;apply le_n
+ |rewrite > sym_plus;rewrite > plus_n_O in \vdash (? % ?);
+ apply le_plus_r;apply le_O_n]
+ |apply le_times;assumption]
+ |apply le_sqrt_to_le_times_l;apply le_n]
+qed.
+
+theorem le_sqrt_to_le_times_r : \forall m,n.sqrt m < n \to m < n*n.
+intros;apply not_le_to_lt;intro;
+apply ((leb_false_to_not_le ? ?
+ (lt_max_to_false (\lambda x.leb (x*x) m) m n H ?))
+ H1);
+apply (trans_le ? ? ? ? H1);cases n
+ [apply le_n
+ |rewrite > times_n_SO in \vdash (? % ?);rewrite > sym_times;apply le_times
+ [apply le_S_S;apply le_O_n
+ |apply le_n]]
+qed.
+
+lemma le_sqrt_n_n : \forall n.sqrt n \leq n.
+intro.unfold sqrt.apply le_max_n.
+qed.
+
+lemma leq_sqrt_n : \forall n. sqrt n * sqrt n \leq n.
+intro;unfold sqrt;apply leb_true_to_le;apply f_max_true;apply (ex_intro ? ? O);
+split
+ [apply le_O_n
+ |simplify;reflexivity]
+qed.
+
+alias num (instance 0) = "natural number".
+lemma le_sqrt_log_n : \forall n,b. 2 < b \to sqrt n * log b n \leq n.
+intros.
+apply (trans_le ? ? ? ? (leq_sqrt_n ?));
+apply le_times_r;unfold sqrt;
+apply f_m_to_le_max
+ [apply le_log_n_n;apply lt_to_le;assumption
+ |apply le_to_leb_true;elim (le_to_or_lt_eq ? ? (le_O_n n))
+ [apply (trans_le ? (exp b (log b n)))
+ [elim (log b n)
+ [apply le_O_n
+ |simplify in \vdash (? ? %);
+ elim (le_to_or_lt_eq ? ? (le_O_n n1))
+ [elim (le_to_or_lt_eq ? ? H3)
+ [apply (trans_le ? (3*(n1*n1)));
+ [simplify in \vdash (? % ?);rewrite > sym_times in \vdash (? % ?);
+ simplify in \vdash (? % ?);
+ simplify;rewrite > sym_plus;
+ rewrite > plus_n_Sm;rewrite > sym_plus in \vdash (? (? % ?) ?);
+ rewrite > assoc_plus;apply le_plus_r;
+ rewrite < plus_n_Sm;
+ rewrite < plus_n_O;
+ apply lt_plus;rewrite > times_n_SO in \vdash (? % ?);
+ apply lt_times_r1;assumption;
+ |apply le_times
+ [assumption
+ |assumption]]
+ |rewrite < H4;apply le_times
+ [apply lt_to_le;assumption
+ |apply lt_to_le;simplify;rewrite < times_n_SO;assumption]]
+ |rewrite < H3;simplify;rewrite < times_n_SO;do 2 apply lt_to_le;assumption]]
+ |simplify;apply le_exp_log;assumption]
+ |rewrite < H1;simplify;apply le_n]]
+qed.