exists; try assumption;
split; assumption]
qed.
-axiom daemon: False.
+
definition REL: category1.
constructor 1;
[ apply setoid
| intros (T T1); apply (binary_relation_setoid T T1)
| intros; constructor 1;
constructor 1; unfold setoid1_of_setoid; simplify;
- [ change with (carr o → carr o → CProp); intros; apply (eq1 ? c c1) ]] cases daemon; qed.
- | intros; split; intro;
+ [ (* changes required to avoid universe inconsistency *)
+ change with (carr o → carr o → CProp); intros; apply (eq ? c c1)
+ | intros; split; intro; change in a a' b b' with (carr o);
+ change in e with (eq ? a a'); change in e1 with (eq ? b b');
[ apply (.= (e ^ -1));
apply (.= e2);
apply e1
[1,3: cases H (w H1); clear H; cases H1; clear H1; unfold;
[ apply (. (e ^ -1 : eq1 ? w x)‡#); assumption
| apply (. #‡(e : eq1 ? w y)); assumption]
- |2,4: exists; try assumption; split; first [apply refl1 | assumption]]]
+ |2,4: exists; try assumption; split;
+ (* change required to avoid universe inconsistency *)
+ change in x with (carr o1); change in y with (carr o2);
+ first [apply refl | assumption]]]
qed.
definition full_subset: ∀s:REL. Ω \sup s.