left associative with precedence 55
for @{ 'compose $a $b }.
-notation "hvbox(U break ↓ V)" non associative with precedence 80 for @{ 'fintersects $U $V }.
+notation "↓a" with precedence 55 for @{ 'downarrow $a }.
+
+notation "hvbox(U break ↓ V)" non associative with precedence 55 for @{ 'fintersects $U $V }.
notation "(a \sup b)" left associative with precedence 60 for @{ 'exp $a $b}.
notation "s \sup (-1)" with precedence 60 for @{ 'invert $s }.
interpretation "ffintersects'" 'fintersects U V = (fun1 ___ (ffintersects' _) U V).
record formal_map (S,T: formal_topology) : Type ≝
- { cr:> continuous_relation S T;
+ { cr:> continuous_relation_setoid S T;
C1: ∀b,c. extS ?? cr (b ↓ c) = (ext ?? cr b) ↓ (ext ?? cr c);
C2: extS ?? cr T = S
- }.
\ No newline at end of file
+ }.
+
+definition formal_map_setoid: formal_topology → formal_topology → setoid1.
+ intros (S T); constructor 1;
+ [ apply (formal_map S T);
+ | constructor 1;
+ [ apply (λf,f1: formal_map S T.f=f1);
+ | simplify; intros 1; apply refl1
+ | simplify; intros 2; apply sym1
+ | simplify; intros 3; apply trans1]]
+qed.
+
+definition cr': ∀FT1,FT2.formal_map_setoid FT1 FT2 → arrows1 BTop FT1 FT2 ≝
+ λFT1,FT2,c.cr ?? c.
+
+coercion cr'.
+
+(*
+definition formal_map_composition:
+ ∀o1,o2,o3: formal_topology.
+ binary_morphism1
+ (formal_map_setoid o1 o2)
+ (formal_map_setoid o2 o3)
+ (formal_map_setoid o1 o3).
+ intros; constructor 1;
+ [ intros; whd in c c1; constructor 1;
+ [ apply (comp1 BTop ??? c c1);
+ | intros;
+*)
\ No newline at end of file