eq: equivalence_relation carr
}.
-definition reflexive1 ≝ λA:Type1.λR:A→A→CProp1.∀x:A.R x x.
-definition symmetric1 ≝ λC:Type1.λlt:C→C→CProp1. ∀x,y:C.lt x y → lt y x.
-definition transitive1 ≝ λA:Type1.λR:A→A→CProp1.∀x,y,z:A.R x y → R y z → R x z.
+definition reflexive1: ∀A:Type1.∀R:A→A→CProp1.CProp1 ≝ λA:Type1.λR:A→A→CProp1.∀x:A.R x x.
+definition symmetric1: ∀A:Type1.∀R:A→A→CProp1.CProp1 ≝ λC:Type1.λlt:C→C→CProp1. ∀x,y:C.lt x y → lt y x.
+definition transitive1: ∀A:Type1.∀R:A→A→CProp1.CProp1 ≝ λA:Type1.λR:A→A→CProp1.∀x,y,z:A.R x y → R y z → R x z.
record equivalence_relation1 (A:Type1) : Type2 ≝
{ eq_rel1:2> A → A → CProp1;
(* questa coercion e' necessaria per problemi di unificazione *)
coercion setoid1_of_setoid.
-definition reflexive2 ≝ λA:Type2.λR:A→A→CProp2.∀x:A.R x x.
-definition symmetric2 ≝ λC:Type2.λlt:C→C→CProp2. ∀x,y:C.lt x y → lt y x.
-definition transitive2 ≝ λA:Type2.λR:A→A→CProp2.∀x,y,z:A.R x y → R y z → R x z.
+definition reflexive2: ∀A:Type2.∀R:A→A→CProp2.CProp2 ≝ λA:Type2.λR:A→A→CProp2.∀x:A.R x x.
+definition symmetric2: ∀A:Type2.∀R:A→A→CProp2.CProp2 ≝ λC:Type2.λlt:C→C→CProp2. ∀x,y:C.lt x y → lt y x.
+definition transitive2: ∀A:Type2.∀R:A→A→CProp2.CProp2 ≝ λA:Type2.λR:A→A→CProp2.∀x,y,z:A.R x y → R y z → R x z.
record equivalence_relation2 (A:Type2) : Type3 ≝
{ eq_rel2:2> A → A → CProp2;
interpretation "constructive not" 'not x = (Not x).
-definition cotransitive ≝
+definition cotransitive: ∀C:Type0. ∀lt:C→C→CProp0.CProp0 ≝
λC:Type0.λlt:C→C→CProp0.∀x,y,z:C. lt x y → lt x z ∨ lt z y.
-definition coreflexive ≝ λC:Type0.λlt:C→C→CProp0. ∀x:C. ¬ (lt x x).
+definition coreflexive: ∀C:Type0. ∀lt:C→C→CProp0.CProp0 ≝
+ λC:Type0.λlt:C→C→CProp0. ∀x:C. ¬ (lt x x).
-definition symmetric ≝ λC:Type0.λlt:C→C→CProp0. ∀x,y:C.lt x y → lt y x.
+definition symmetric: ∀C:Type0. ∀lt:C→C→CProp0.CProp0 ≝
+ λC:Type0.λlt:C→C→CProp0. ∀x,y:C.lt x y → lt y x.
-definition antisymmetric ≝ λA:Type0.λR:A→A→CProp0.λeq:A→A→Prop.∀x:A.∀y:A.R x y→R y x→eq x y.
+definition antisymmetric: ∀A:Type0. ∀R:A→A→CProp0. ∀eq:A→A→Prop.CProp0 ≝
+ λA:Type0.λR:A→A→CProp0.λeq:A→A→Prop.∀x:A.∀y:A.R x y→R y x→eq x y.
-definition reflexive ≝ λA:Type0.λR:A→A→CProp0.∀x:A.R x x.
+definition reflexive: ∀C:Type0. ∀lt:C→C→CProp0.CProp0 ≝ λA:Type0.λR:A→A→CProp0.∀x:A.R x x.
-definition transitive ≝ λA:Type0.λR:A→A→CProp0.∀x,y,z:A.R x y → R y z → R x z.
-
+definition transitive: ∀C:Type0. ∀lt:C→C→CProp0.CProp0 ≝ λA:Type0.λR:A→A→CProp0.∀x,y,z:A.R x y → R y z → R x z.
\ No newline at end of file