cic:/Coq/Init/Logic/sym_eq.con
cic:/Coq/Init/Logic/trans_eq.con
cic:/Coq/Init/Logic/eq_ind.con
- cic:/Coq/Init/Logic/eq_ind_r.con.
+ cic:/Coq/Init/Logic/eq_ind_r.con
+ cic:/Coq/Init/Logic/f_equal.con
+ cic:/Coq/Init/Logic/f_equal1.con.
default "true"
cic:/Coq/Init/Logic/True.ind.
'nleq x y = (cic:/Coq/Init/Logic/not.con
(cic:/Coq/Init/Peano/le.ind#xpointer(1/1) x y)).
+theorem f_equal1 :
+ \forall A,B:Type. \forall f:A \to B. \forall x,y:A.
+ x = y \to f y = f x.
+ intros.elim H.reflexivity.
+qed.
+