(* *)
(**************************************************************************)
-include "basic_2/computation/fpbs_aaa.ma".
-include "basic_2/computation/csx_aaa.ma".
-include "basic_2/computation/fsb_csx.ma".
+include "basic_2/rt_computation/csx_aaa.ma".
+include "basic_2/rt_computation/fpbs_aaa.ma".
+include "basic_2/rt_computation/fpbs_fpb.ma".
+include "basic_2/rt_computation/fsb_csx.ma".
-(* "QRST" STRONGLY NORMALIZING CLOSURES *************************************)
+(* STRONGLY NORMALIZING CLOSURES FOR PARALLEL RST-TRANSITION ****************)
-(* Main properties **********************************************************)
+(* Main properties with atomic arity assignment for terms *******************)
-(* Note: this is the "big tree" theorem ("RST" version) *)
-theorem aaa_fsb: â\88\80h,o,G,L,T,A. â¦\83G, Lâ¦\84 â\8a¢ T â\81\9d A â\86\92 ⦥[h, o] ⦃G, L, T⦄.
+(* Note: this is the "big tree" theorem *)
+theorem aaa_fsb: â\88\80h,o,G,L,T,A. â¦\83G, Lâ¦\84 â\8a¢ T â\81\9d A â\86\92 â\89¥[h, o] ð\9d\90\92⦃G, L, T⦄.
/3 width=2 by aaa_csx, csx_fsb/ qed.
-(* Note: this is the "big tree" theorem ("QRST" version) *)
-theorem aaa_fsba: ∀h,o,G,L,T,A. ⦃G, L⦄ ⊢ T ⁝ A → ⦥⦥[h, o] ⦃G, L, T⦄.
-/3 width=2 by fsb_fsba, aaa_fsb/ qed.
+(* Advanced eliminators with atomic arity assignment for terms **************)
-(* Advanced eliminators on atomica arity assignment for terms ***************)
-
-fact aaa_ind_fpb_aux: ∀h,o. ∀R:relation3 genv lenv term.
+fact aaa_ind_fpb_aux: ∀h,o. ∀R:relation3 ….
(∀G1,L1,T1,A. ⦃G1, L1⦄ ⊢ T1 ⁝ A →
(∀G2,L2,T2. ⦃G1, L1, T1⦄ ≻[h, o] ⦃G2, L2, T2⦄ → R G2 L2 T2) →
R G1 L1 T1
) →
- â\88\80G,L,T. â¦\83G, Lâ¦\84 â\8a¢ â¬\8a*[h, o] T → ∀A. ⦃G, L⦄ ⊢ T ⁝ A → R G L T.
+ â\88\80G,L,T. â¦\83G, Lâ¦\84 â\8a¢ â¬\88*[h, o] ð\9d\90\92â¦\83Tâ¦\84 → ∀A. ⦃G, L⦄ ⊢ T ⁝ A → R G L T.
#h #o #R #IH #G #L #T #H @(csx_ind_fpb … H) -G -L -T
#G1 #L1 #T1 #H1 #IH1 #A1 #HTA1 @IH -IH //
#G2 #L2 #T2 #H12 elim (fpbs_aaa_conf h o … G2 … L2 … T2 … HTA1) -A1
/2 width=2 by fpb_fpbs/
qed-.
-lemma aaa_ind_fpb: ∀h,o. ∀R:relation3 genv lenv term.
+lemma aaa_ind_fpb: ∀h,o. ∀R:relation3 ….
(∀G1,L1,T1,A. ⦃G1, L1⦄ ⊢ T1 ⁝ A →
(∀G2,L2,T2. ⦃G1, L1, T1⦄ ≻[h, o] ⦃G2, L2, T2⦄ → R G2 L2 T2) →
R G1 L1 T1
∀G,L,T,A. ⦃G, L⦄ ⊢ T ⁝ A → R G L T.
/4 width=4 by aaa_ind_fpb_aux, aaa_csx/ qed-.
-fact aaa_ind_fpbg_aux: ∀h,o. ∀R:relation3 genv lenv term.
+fact aaa_ind_fpbg_aux: ∀h,o. ∀R:relation3 ….
(∀G1,L1,T1,A. ⦃G1, L1⦄ ⊢ T1 ⁝ A →
- (∀G2,L2,T2. ⦃G1, L1, T1⦄ >≛[h, o] ⦃G2, L2, T2⦄ → R G2 L2 T2) →
+ (∀G2,L2,T2. ⦃G1, L1, T1⦄ >[h, o] ⦃G2, L2, T2⦄ → R G2 L2 T2) →
R G1 L1 T1
) →
- â\88\80G,L,T. â¦\83G, Lâ¦\84 â\8a¢ â¬\8a*[h, o] T → ∀A. ⦃G, L⦄ ⊢ T ⁝ A → R G L T.
+ â\88\80G,L,T. â¦\83G, Lâ¦\84 â\8a¢ â¬\88*[h, o] ð\9d\90\92â¦\83Tâ¦\84 → ∀A. ⦃G, L⦄ ⊢ T ⁝ A → R G L T.
#h #o #R #IH #G #L #T #H @(csx_ind_fpbg … H) -G -L -T
#G1 #L1 #T1 #H1 #IH1 #A1 #HTA1 @IH -IH //
#G2 #L2 #T2 #H12 elim (fpbs_aaa_conf h o … G2 … L2 … T2 … HTA1) -A1
/2 width=2 by fpbg_fwd_fpbs/
qed-.
-lemma aaa_ind_fpbg: ∀h,o. ∀R:relation3 genv lenv term.
+lemma aaa_ind_fpbg: ∀h,o. ∀R:relation3 ….
(∀G1,L1,T1,A. ⦃G1, L1⦄ ⊢ T1 ⁝ A →
- (∀G2,L2,T2. ⦃G1, L1, T1⦄ >≛[h, o] ⦃G2, L2, T2⦄ → R G2 L2 T2) →
+ (∀G2,L2,T2. ⦃G1, L1, T1⦄ >[h, o] ⦃G2, L2, T2⦄ → R G2 L2 T2) →
R G1 L1 T1
) →
∀G,L,T,A. ⦃G, L⦄ ⊢ T ⁝ A → R G L T.