#n #posn (cases (le_to_or_lt_eq … posn))
[#lt1n @mod_O_to_divides [@lt_O_smallest_factor //]
>smallest_factor_to_min // @eqb_true_to_eq @f_min_true
- @(ex_intro … n) % /2/ @eq_to_eqb_true /2/
+ @(ex_intro … n) % /2/
|#H <H //
]
qed.
theorem prime_nth_prime : ∀n:nat.prime (nth_prime n).
#n (cases n)
[@primeb_true_to_prime //
- |#m >nth_primeS @primeb_true_to_prime check f_min_true @(f_min_true primeb)
+ |#m >nth_primeS @primeb_true_to_prime @(f_min_true primeb)
@(ex_intro nat ? (smallest_factor (S (nth_prime m)!)))
% [% // @le_S_S @(transitive_le … (le_smallest_factor_n …))
<plus_n_Sm @le_plus_n_r