oa_overlap_preservers_meet:
∀p,q.oa_overlap p q → oa_overlap p (oa_meet bool (λx.match x with [ true ⇒ p | false ⇒ q ]));
oa_join_split:
- ∀I.∀p,q_i.oa_overlap p (oa_join I q_i) ↔ ∃i:I.oa_overlap p (q_i i);
+ ∀I.∀p,q.oa_overlap p (oa_join I q) ↔ ∃i:I.oa_overlap p (q i);
oa_density:
∀p,q.(∀r.oa_overlap p r → oa_overlap q r) → oa_leq p q
}.
for @{ 'oa_meet (λx__:bool.match x__ with [ true ⇒ $a | false ⇒ $b ]) }.
notation > "hovbox(∧ f)" non associative with precedence 60
for @{ 'oa_meet $f }.
-notation < "hovbox(mstyle scriptlevel 1 scriptsizemultiplier 1.5 (∧) \sub(ident i ∈ I) break p)" non associative with precedence 50
+notation < "hovbox(mstyle scriptlevel 1 scriptsizemultiplier 1.7 (∧) \below (ident i ∈ I) break term 90 p)" non associative with precedence 50
for @{ 'oa_meet (λ${ident i}:$I.$p) }.
-notation < "hovbox(mstyle scriptlevel 1 scriptsizemultiplier 1.5 (∧) \nbsp p)" non associative with precedence 50
+notation < "hovbox(mstyle scriptlevel 1 scriptsizemultiplier 1.7 (∧) \below (\emsp) \nbsp term 90 p)" non associative with precedence 50
for @{ 'oa_meet (λ${ident i}.($p $_)) }.
notation < "hovbox(a ∧ b)" left associative with precedence 50
-for @{ 'oa_meet (λx__:$_.match x__ with [ true ⇒ $a | false ⇒ $b ]) }.
+for @{ 'oa_meet (λ${ident i}:$_.match $i with [ true ⇒ $a | false ⇒ $b ]) }.
interpretation "o-algebra meet" 'oa_meet \eta.f = (oa_meet _ _ f).
-include "nat/nat.ma".
-lemma x : ∀A:OAlgebra.∀x,y:A.∀f:ℕ→A. (x ∧ y >< x) → x = ∧ (λi:ℕ.x) ∧ ∧ f.
-
+notation > "hovbox(a ∨ b)" left associative with precedence 49
+for @{ 'oa_join (λx__:bool.match x__ with [ true ⇒ $a | false ⇒ $b ]) }.
+notation > "hovbox(∨ f)" non associative with precedence 59
+for @{ 'oa_join $f }.
+notation < "hovbox(mstyle scriptlevel 1 scriptsizemultiplier 1.7 (∨) \below (ident i ∈ I) break term 90 p)" non associative with precedence 49
+for @{ 'oa_join (λ${ident i}:$I.$p) }.
+notation < "hovbox(mstyle scriptlevel 1 scriptsizemultiplier 1.7 (∨) \below (\emsp) \nbsp term 90 p)" non associative with precedence 49
+for @{ 'oa_join (λ${ident i}.($p $_)) }.
+notation < "hovbox(a ∨ b)" left associative with precedence 49
+for @{ 'oa_join (λ${ident i}:$_.match $i with [ true ⇒ $a | false ⇒ $b ]) }.
+
+interpretation "o-algebra join" 'oa_join \eta.f = (oa_join _ _ f).
-notation ""
+include "nat/plus.ma".
+
+lemma x : ∀A:OAlgebra.∀x,y:A.∀f:ℕ→A.
+ x ≤ y →
+ (x ∧ y >< x ∨ y ∧ x) →
+ x = ∧ (λi:ℕ.x ∧ f i) ∧ ∨ (λi:ℕ.∧ (λx.f (x+i))) → x = y.
+intros;
+