intros (S T); constructor 1;
[ apply (continuous_relation S T)
| constructor 1;
- [ apply (λr,s:continuous_relation S T.∀b. eq1 (oa_P (carrbt S)) (A ? (r⎻ b)) (A ? (s⎻ b)));
+ [ (*apply (λr,s:continuous_relation S T.∀b. eq1 (oa_P (carrbt S)) (A ? (r⎻ b)) (A ? (s⎻ b)));*)
+ apply (λr,s:continuous_relation S T.r⎻* ∘ (A S) = s⎻* ∘ (A ?));
| simplify; intros; apply refl1;
| simplify; intros; apply sym1; apply H
| simplify; intros; apply trans1; [2: apply H |3: apply H1; |1: skip]]]
| intros; apply H;]
| intros; constructor 1;
[ apply continuous_relation_comp;
- | intros; simplify; intro x; simplify; (*
- lapply depth=0 (continuous_relation_eq' ???? H) as H';
- lapply depth=0 (continuous_relation_eq' ???? H1) as H1';
- letin K ≝ (λX.H1' (minus_star_image ?? a (A ? X))); clearbody K;
- cut (∀X:Ω \sup o1.
- minus_star_image o2 o3 b (A o2 (minus_star_image o1 o2 a (A o1 X)))
- = minus_star_image o2 o3 b' (A o2 (minus_star_image o1 o2 a' (A o1 X))));
- [2: intro; apply sym1; apply (.= #‡(†((H' ?)\sup -1))); apply sym1; apply (K X);]
- clear K H' H1';
- cut (∀X:Ω \sup o1.
- minus_star_image o1 o3 (b ∘ a) (A o1 X) = minus_star_image o1 o3 (b'∘a') (A o1 X));
- [2: intro;
- apply (.= (minus_star_image_comp ??????));
- apply (.= #‡(saturated ?????));
- [ apply ((saturation_idempotent ????) \sup -1); apply A_is_saturation ]
- apply sym1;
- apply (.= (minus_star_image_comp ??????));
- apply (.= #‡(saturated ?????));
- [ apply ((saturation_idempotent ????) \sup -1); apply A_is_saturation ]
- apply ((Hcut X) \sup -1)]
- clear Hcut; generalize in match x; clear x;
- apply (continuous_relation_eq_inv');
- apply Hcut1;*)]
- | intros; simplify; intro; do 2 (unfold continuous_relation_comp); simplify;
- (*apply (.= †(ASSOC1‡#));
- apply refl1*)
- | intros; simplify; intro; unfold continuous_relation_comp; simplify;
- (*apply (.= †((id_neutral_right1 ????)‡#));
+ | intros; simplify; (*intro x; simplify;*)
+ change with (b⎻* ∘ (a⎻* ∘ A o1) = b'⎻* ∘ (a'⎻* ∘ A o1));
+ change in H with (a⎻* ∘ A o1 = a'⎻* ∘ A o1);
+ change in H1 with (b⎻* ∘ A o2 = b'⎻* ∘ A o2);
+ apply (.= H‡#);
+ intro x;
+
+ change with (eq1 (oa_P (carrbt o3)) (b⎻* (a'⎻* (A o1 x))) (b'⎻*(a'⎻* (A o1 x))));
+ lapply (saturated o1 o2 a' (A o1 x):?) as X;
+ [ apply ((saturation_idempotent ?? (A_is_saturation o1) x)^-1) ]
+ change in X with (eq1 (oa_P (carrbt o2)) (a'⎻* (A o1 x)) (A o2 (a'⎻* (A o1 x))));
+ unfold uncurry_arrows;
+ apply (.= †X); whd in H1;
+ lapply (H1 (a'⎻* (A o1 x))) as X1;
+ change in X1 with (eq1 (oa_P (carrbt o3)) (b⎻* (A o2 (a'⎻* (A o1 x)))) (b'⎻* (A o2 (a' \sup ⎻* (A o1 x)))));
+ apply (.= X1);
+ unfold uncurry_arrows;
+ apply (†(X\sup -1));]
+ | intros; simplify;
+ change with (((a34⎻* ∘ a23⎻* ) ∘ a12⎻* ) ∘ A o1 = ((a34⎻* ∘ (a23⎻* ∘ a12⎻* )) ∘ A o1));
+ apply rule (#‡ASSOC1\sup -1);
+ | intros; simplify;
+ change with ((a⎻* ∘ (id1 ? o1)⎻* ) ∘ A o1 = a⎻* ∘ A o1);
+ apply rule (†((id_neutral_right1 ????)‡#));
apply refl1*)
| intros; simplify; intro; simplify;
apply (.= †((id_neutral_left1 ????)‡#));