+++ /dev/null
-(**************************************************************************)
-(* ___ *)
-(* ||M|| *)
-(* ||A|| A project by Andrea Asperti *)
-(* ||T|| *)
-(* ||I|| Developers: *)
-(* ||T|| The HELM team. *)
-(* ||A|| http://helm.cs.unibo.it *)
-(* \ / *)
-(* \ / This file is distributed under the terms of the *)
-(* v GNU General Public License Version 2 *)
-(* *)
-(**************************************************************************)
-
-include "delayed_updating/syntax/prototerm_constructors.ma".
-include "delayed_updating/syntax/prototerm_equivalence.ma".
-include "delayed_updating/substitution/fsubst.ma".
-include "delayed_updating/substitution/unwind.ma".
-include "delayed_updating/syntax/path_structure.ma".
-include "delayed_updating/syntax/path_balanced.ma".
-include "delayed_updating/syntax/path_depth.ma".
-include "delayed_updating/notation/relations/black_rightarrow_df_4.ma".
-include "ground/xoa/ex_1_2.ma".
-include "ground/xoa/and_4.ma".
-
-(* DELAYED FOCUSED REDUCTION ************************************************)
-
-definition dfr (p) (q): relation2 prototerm prototerm ≝
- λt1,t2. ∃∃b,n.
- let r ≝ p●𝗔◗b●𝗟◗q in
- ∧∧ ⊗b ϵ 𝐁 & ∀f. ↑❘q❘ = (↑[q]⫯f)@❨n❩ & r◖𝗱n ϵ t1 &
- t1[⋔r←𝛗(n+❘b❘).(t1⋔(p◖𝗦))] ⇔ t2
-.
-
-interpretation
- "focused balanced reduction with delayed updating (prototerm)"
- 'BlackRightArrowDF t1 p q t2 = (dfr p q t1 t2).
+++ /dev/null
-(**************************************************************************)
-(* ___ *)
-(* ||M|| *)
-(* ||A|| A project by Andrea Asperti *)
-(* ||T|| *)
-(* ||I|| Developers: *)
-(* ||T|| The HELM team. *)
-(* ||A|| http://helm.cs.unibo.it *)
-(* \ / *)
-(* \ / This file is distributed under the terms of the *)
-(* v GNU General Public License Version 2 *)
-(* *)
-(**************************************************************************)
-
-include "delayed_updating/reduction/dfr.ma".
-include "delayed_updating/reduction/ifr.ma".
-include "delayed_updating/substitution/fsubst_unwind.ma".
-include "delayed_updating/substitution/fsubst_eq.ma".
-include "delayed_updating/substitution/unwind_constructors.ma".
-include "delayed_updating/substitution/unwind_preterm_eq.ma".
-include "delayed_updating/substitution/unwind_structure_depth.ma".
-include "delayed_updating/substitution/unwind_depth.ma".
-include "delayed_updating/syntax/prototerm_proper_constructors.ma".
-include "delayed_updating/syntax/path_structure_depth.ma".
-include "ground/relocation/tr_uni_compose.ma".
-include "ground/relocation/tr_pap_pushs.ma".
-
-(* DELAYED FOCUSED REDUCTION ************************************************)
-
-lemma tr_uni_eq_repl (n1) (n2):
- n1 = n2 → 𝐮❨n1❩ ≗ 𝐮❨n2❩.
-// qed.
-
-axiom pippo (b) (q) (n):
- ↑❘q❘ = (↑[q]𝐢)@❨n❩ →
- ↑❘q❘+❘b❘= (↑[b●𝗟◗q]𝐢)@❨n+❘b❘❩.
-
-lemma unwind_rmap_tls_eq_id (p) (n):
- ❘p❘ = ↑[p]𝐢@❨n❩ →
- (𝐢) ≗ ⇂*[n]↑[p]𝐢.
-#p @(list_ind_rcons … p) -p
-[ #n <depth_empty #H destruct
-| #p * [ #m ] #IH #n
- [ <depth_d_dx <unwind_rmap_pap_d_dx #H0
- @(stream_eq_trans … (unwind_rmap_tls_d_dx …))
- @(stream_eq_trans … (IH …)) -IH //
- | /2 width=1 by/
- | <depth_L_dx <unwind_rmap_L_dx
- cases n -n [| #n ] #H0
- [
- |
- ]
- | /2 width=1 by/
- | /2 width=1 by/
- ]
-]
-
-
-(* (↑❘q❘+❘b❘=↑[b●𝗟◗q]𝐢@❨n+❘b❘❩ *)
-(* [↑[p]𝐢@❨n❩]⫯*[❘p❘]f∘⇂*[n]↑[p]𝐢) *)
-lemma unwind_rmap_tls_eq (f) (p) (n):
- ❘p❘ = ↑[p]𝐢@❨n❩ →
- f ≗ ⇂*[n]↑[p]f.
-#f #p #n #Hp
-@(stream_eq_canc_dx … (stream_tls_eq_repl …))
-[| @unwind_rmap_decompose | skip ]
-<tr_compose_tls <Hp
-
-@(stream_eq_canc_dx) … (unwind_rmap_decompose …))
-
-lemma dfr_unwind_bi (f) (p) (q) (t1) (t2): t1 ϵ 𝐓 →
- t1 ➡𝐝𝐟[p,q] t2 → ↑[f]t1 ➡𝐟[⊗p,⊗q] ↑[f]t2.
-#f #p #q #t1 #t2 #H0t1
-* #b #n * #Hb #Hn #Ht1 #Ht2
-@(ex1_2_intro … (⊗b) (↑❘⊗q❘)) @and4_intro
-[ //
-| #g <unwind_rmap_structure <depth_structure
- >tr_pushs_swap <tr_pap_pushs_le //
-| lapply (in_comp_unwind_bi f … Ht1) -Ht1 -H0t1 -Hb -Ht2
- <unwind_path_d_empty_dx //
-| lapply (unwind_term_eq_repl_dx f … Ht2) -Ht2 #Ht2
- @(subset_eq_trans … Ht2) -t2
- @(subset_eq_trans … (unwind_fsubst …))
- [ <unwind_rmap_append <unwind_rmap_A_sn (* <unwind_rmap_append <unwind_rmap_L_sn *)
- <structure_append <structure_A_sn <structure_append <structure_L_sn
- <depth_append <depth_L_sn <depth_structure <depth_structure
- @fsubst_eq_repl [ // ]
- @(subset_eq_trans … (unwind_iref …))
- @(subset_eq_canc_sn … (unwind_term_eq_repl_dx …))
- [ @unwind_grafted_S /2 width=2 by ex_intro/ | skip ]
- @(subset_eq_trans … (unwind_term_after …))
- @(subset_eq_canc_dx … (unwind_term_after …))
- @unwind_term_eq_repl_sn -t1
- @(stream_eq_trans … (tr_compose_uni_dx …))
- lapply (Hn (𝐢)) -Hn >tr_id_unfold #Hn
- lapply (pippo … b … Hn) -Hn #Hn
- @tr_compose_eq_repl
- [ <unwind_rmap_pap_le //
- <Hn <nrplus_inj_sn //
- |
- ]
- | //
- | /2 width=2 by ex_intro/
- | //
- ]
-]
+++ /dev/null
-(**************************************************************************)
-(* ___ *)
-(* ||M|| *)
-(* ||A|| A project by Andrea Asperti *)
-(* ||T|| *)
-(* ||I|| Developers: *)
-(* ||T|| The HELM team. *)
-(* ||A|| http://helm.cs.unibo.it *)
-(* \ / *)
-(* \ / This file is distributed under the terms of the *)
-(* v GNU General Public License Version 2 *)
-(* *)
-(**************************************************************************)
-
-include "delayed_updating/syntax/prototerm.ma".
-include "delayed_updating/notation/functions/pitchforkleftarrow_3.ma".
-
-(* FOCALIZED SUBSTITUTION ***************************************************)
-
-definition fsubst (p) (u): prototerm → prototerm ≝
- λt,q.
- ∨∨ ∃∃r. r ϵ u & p●r = q
- | ∧∧ q ϵ t & (∀r. p●r = q → ⊥)
-.
-
-interpretation
- "focalized substitution (prototerm)"
- 'PitchforkLeftArrow t p u = (fsubst p u t).
+++ /dev/null
-(**************************************************************************)
-(* ___ *)
-(* ||M|| *)
-(* ||A|| A project by Andrea Asperti *)
-(* ||T|| *)
-(* ||I|| Developers: *)
-(* ||T|| The HELM team. *)
-(* ||A|| http://helm.cs.unibo.it *)
-(* \ / *)
-(* \ / This file is distributed under the terms of the *)
-(* v GNU General Public License Version 2 *)
-(* *)
-(**************************************************************************)
-
-include "delayed_updating/substitution/fsubst.ma".
-include "delayed_updating/syntax/prototerm_equivalence.ma".
-
-(* Constructions with subset_equivalence ************************************)
-
-lemma subset_inclusion_fsubst_bi (t1) (t2) (u1) (u2) (p):
- t1 ⊆ t2 → u1 ⊆ u2 → t1[⋔p←u1] ⊆ t2[⋔p←u2].
-#t1 #t2 #u1 #u2 #p #Ht #Hu #q * *
-[ #r #Hr #H0 destruct
- /4 width=3 by ex2_intro, or_introl/
-| /4 width=2 by or_intror, conj/
-]
-qed.
-
-lemma fsubst_eq_repl (t1) (t2) (u1) (u2) (p):
- t1 ⇔ t2 → u1 ⇔ u2 → t1[⋔p←u1] ⇔ t2[⋔p←u2].
-#t1 #t2 #u1 #u2 #p * #H1t #H2t * #H1u #H2u
-/3 width=5 by conj, subset_inclusion_fsubst_bi/
-qed.
+++ /dev/null
-(**************************************************************************)
-(* ___ *)
-(* ||M|| *)
-(* ||A|| A project by Andrea Asperti *)
-(* ||T|| *)
-(* ||I|| Developers: *)
-(* ||T|| The HELM team. *)
-(* ||A|| http://helm.cs.unibo.it *)
-(* \ / *)
-(* \ / This file is distributed under the terms of the *)
-(* v GNU General Public License Version 2 *)
-(* *)
-(**************************************************************************)
-
-include "delayed_updating/substitution/fsubst.ma".
-include "delayed_updating/substitution/unwind_prototerm.ma".
-include "delayed_updating/syntax/prototerm_equivalence.ma".
-include "delayed_updating/syntax/path_depth.ma".
-include "delayed_updating/syntax/path_structure.ma".
-include "delayed_updating/syntax/path_balanced.ma".
-include "delayed_updating/notation/relations/black_rightarrow_f_4.ma".
-include "ground/xoa/ex_1_2.ma".
-include "ground/xoa/and_4.ma".
-
-(* IMMEDIATE FOCUSED REDUCTION ************************************************)
-
-definition ifr (p) (q): relation2 prototerm prototerm ≝
- λt1,t2. ∃∃b,n.
- let r ≝ p●𝗔◗b●𝗟◗q in
- ∧∧ ⊗b ϵ 𝐁 & ∀f. ↑❘q❘ = (↑[q]⫯f)@❨n❩ & r◖𝗱n ϵ t1 &
- t1[⋔r←↑[𝐮❨❘b●𝗟◗q❘❩](t1⋔(p◖𝗦))] ⇔ t2
-.
-
-interpretation
- "focused balanced reduction with immediate updating (prototerm)"
- 'BlackRightArrowF t1 p q t2 = (ifr p q t1 t2).
definition dfr (p) (q): relation2 prototerm prototerm ≝
λt1,t2. ∃∃b,n.
let r ≝ p●𝗔◗b●𝗟◗q in
- â\88§â\88§ (â\8a\97b ϵ ð\9d\90\81 â\88§ ð\9d\9f\8e = â\9d\98bâ\9d\98) & â\86\91â\9d\98qâ\9d\98 = (▼[r]𝐢)@❨n❩ & r◖𝗱n ϵ t1 &
- t1[â\8b\94râ\86\90ð\9d\9b\97(n+â\9d\98bâ\9d\98).(t1⋔(p◖𝗦))] ⇔ t2
+ â\88§â\88§ (â\8a\97b ϵ ð\9d\90\81 â\88§ ð\9d\9f\8e = â\99b) & â\86\91â\99q = (▼[r]𝐢)@❨n❩ & r◖𝗱n ϵ t1 &
+ t1[â\8b\94râ\86\90ð\9d\9b\97(n+â\99b).(t1⋔(p◖𝗦))] ⇔ t2
.
interpretation
include "delayed_updating/reduction/dfr.ma".
include "delayed_updating/reduction/ifr.ma".
+
include "delayed_updating/unwind1/unwind_fsubst.ma".
include "delayed_updating/unwind1/unwind_constructors.ma".
include "delayed_updating/unwind1/unwind_preterm_eq.ma".
include "delayed_updating/unwind1/unwind_structure_depth.ma".
include "delayed_updating/unwind1/unwind_depth.ma".
+
include "delayed_updating/substitution/fsubst_eq.ma".
include "delayed_updating/substitution/lift_prototerm_eq.ma".
include "delayed_updating/syntax/prototerm_proper_constructors.ma".
t1 ➡𝐝𝐟[p,q] t2 → ▼[𝐢]t1 ➡𝐟[⊗p,⊗q] ▼[𝐢]t2.
#p #q #t1 #t2 #H0t1
* #b #n * #Hb #Hn #Ht1 #Ht2
-@(ex1_2_intro â\80¦ (â\8a\97b) (â\86\91â\9d\98â\8a\97qâ\9d\98)) @and4_intro
+@(ex1_2_intro â\80¦ (â\8a\97b) (â\86\91â\99â\8a\97q)) @and4_intro
[ //
-| //
+| (*//*)
| lapply (in_comp_unwind_bi (𝐢) … Ht1) -Ht1 -H0t1 -Hb -Ht2
<unwind_path_d_empty_dx <depth_structure //
| lapply (unwind_term_eq_repl_dx (𝐢) … Ht2) -Ht2 #Ht2
@fsubst_eq_repl [ // ]
@(subset_eq_trans … (unwind_iref …))
- elim Hb -Hb #Hb #H0 <H0 -H0 <nrplus_zero_dx <nplus_zero_dx <Hn
+ elim Hb -Hb #Hb #H0 <H0 -H0 <nrplus_zero_dx <nplus_zero_dx <nsucc_unfold
+ >Hn
@(subset_eq_canc_sn … (lift_term_eq_repl_dx …))
[ @unwind_grafted_S /2 width=2 by ex_intro/ | skip ]
-
+ <Hn <Hn
+(*
+ @(subset_eq_trans … (lift_term_eq_repl_dx …))
+ [ @(unwind_term_eq_repl_sn … (tls_succ_unwind q …)) | skip ]
+*)
(*
+
+ @subset_eq_trans
+ [2: @unwind_term_eq_repl_dx
+ @(subset_eq_canc_sn … (unwind_term_eq_repl_dx …))
+
@(subset_eq_canc_sn … (unwind_term_eq_repl_dx …))
[ @unwind_grafted_S /2 width=2 by ex_intro/ | skip ]
---------------------------
↑[𝐮❨↑❘q❘+❘b❘❩] ↑[↑[p]𝐢] t ⇔ ↑[𝐮❨↑[p●𝗔◗b●𝗟◗q]𝐢@❨n+❘b❘❩❩] t
*)
+(*
+(↑[𝐮❨↑❘q❘❩]▼[⇂*[↑❘q❘]▼[p●𝗟◗q]𝐢](t1⋔(p◖𝗦))⇔▼[𝐮❨↑❘q❘❩∘▼[p●𝗔◗b●𝗟◗q]𝐢](t1⋔(p◖𝗦))
+*)
definition ifr (p) (q): relation2 prototerm prototerm ≝
λt1,t2. ∃∃b,n.
let r ≝ p●𝗔◗b●𝗟◗q in
- â\88§â\88§ (â\8a\97b ϵ ð\9d\90\81 â\88§ ð\9d\9f\8e = â\9d\98bâ\9d\98) & â\86\91â\9d\98qâ\9d\98 = (▼[r]𝐢)@❨n❩ & r◖𝗱n ϵ t1 &
- t1[â\8b\94râ\86\90â\86\91[ð\9d\90®â\9d¨â\9d\98bâ\97\8fð\9d\97\9fâ\97\97qâ\9d\98❩](t1⋔(p◖𝗦))] ⇔ t2
+ â\88§â\88§ (â\8a\97b ϵ ð\9d\90\81 â\88§ ð\9d\9f\8e = â\99b) & â\86\91â\99q = (▼[r]𝐢)@❨n❩ & r◖𝗱n ϵ t1 &
+ t1[â\8b\94râ\86\90â\86\91[ð\9d\90®â\9d¨â\99(bâ\97\8fð\9d\97\9fâ\97\97q)❩](t1⋔(p◖𝗦))] ⇔ t2
.
interpretation
(**************************************************************************)
include "delayed_updating/syntax/path.ma".
+include "delayed_updating/notation/functions/flat_1.ma".
include "ground/arith/nat_plus.ma".
-include "ground/notation/functions/verticalbars_1.ma".
(* DEPTH FOR PATH ***********************************************************)
interpretation
"depth (path)"
- 'VerticalBars p = (depth p).
+ 'Flat p = (depth p).
(* Basic constructions ******************************************************)
-lemma depth_empty: ð\9d\9f\8e = â\9d\98ð\9d\90\9eâ\9d\98.
+lemma depth_empty: ð\9d\9f\8e = â\99ð\9d\90\9e.
// qed.
-lemma depth_d_sn (q) (n): â\9d\98qâ\9d\98 = â\9d\98ð\9d\97±nâ\97\97qâ\9d\98.
+lemma depth_d_sn (q) (n): â\99q = â\99(ð\9d\97±nâ\97\97q).
// qed.
-lemma depth_m_sn (q): â\9d\98qâ\9d\98 = â\9d\98ð\9d\97ºâ\97\97qâ\9d\98.
+lemma depth_m_sn (q): â\99q = â\99(ð\9d\97ºâ\97\97q).
// qed.
-lemma depth_L_sn (q): â\86\91â\9d\98qâ\9d\98 = â\9d\98ð\9d\97\9fâ\97\97qâ\9d\98.
+lemma depth_L_sn (q): â\86\91â\99q = â\99(ð\9d\97\9fâ\97\97q).
// qed.
-lemma depth_A_sn (q): â\9d\98qâ\9d\98 = â\9d\98ð\9d\97\94â\97\97qâ\9d\98.
+lemma depth_A_sn (q): â\99q = â\99(ð\9d\97\94â\97\97q).
// qed.
-lemma depth_S_sn (q): â\9d\98qâ\9d\98 = â\9d\98ð\9d\97¦â\97\97qâ\9d\98.
+lemma depth_S_sn (q): â\99q = â\99(ð\9d\97¦â\97\97q).
// qed.
(* Main constructions *******************************************************)
theorem depth_append (p1) (p2):
- ❘p2❘+❘p1❘ = ❘p1●p2❘.
+ (♭p2)+(♭p1) = ♭(p1●p2).
#p1 elim p1 -p1 //
* [ #n ] #p1 #IH #p2 <list_append_lcons_sn
[ <depth_d_sn <depth_d_sn //
(* Constructions with list_rcons ********************************************)
lemma depth_d_dx (p) (n):
- â\9d\98pâ\9d\98 = â\9d\98pâ\97\96ð\9d\97±nâ\9d\98.
+ â\99p = â\99(pâ\97\96ð\9d\97±n).
// qed.
lemma depth_m_dx (p):
- â\9d\98pâ\9d\98 = â\9d\98pâ\97\96ð\9d\97ºâ\9d\98.
+ â\99p = â\99(pâ\97\96ð\9d\97º).
// qed.
lemma depth_L_dx (p):
- â\86\91â\9d\98pâ\9d\98 = â\9d\98pâ\97\96ð\9d\97\9fâ\9d\98.
+ â\86\91â\99p = â\99(pâ\97\96ð\9d\97\9f).
// qed.
lemma depth_A_dx (p):
- â\9d\98pâ\9d\98 = â\9d\98pâ\97\96ð\9d\97\94â\9d\98.
+ â\99p = â\99(pâ\97\96ð\9d\97\94).
// qed.
lemma depth_S_dx (p):
- â\9d\98pâ\9d\98 = â\9d\98pâ\97\96ð\9d\97¦â\9d\98.
+ â\99p = â\99(pâ\97\96ð\9d\97¦).
// qed.
(* Constructions with depth *************************************************)
lemma depth_structure (p):
- â\9d\98pâ\9d\98 = â\9d\98â\8a\97pâ\9d\98.
+ â\99p = â\99â\8a\97p.
#p elim p -p //
* [ #n ] #p #IH //
[ <structure_L_sn <depth_L_sn <depth_L_sn //
k f (𝐞) = ▼{A}❨k, f, 𝐞❩.
// qed.
-lemma unwind_d_empty_sn (A) (k) (n) (f):
+lemma unwind_d_empty (A) (k) (n) (f):
▼❨(λg,p. k g (𝗱(f@❨n❩)◗p)), 𝐮❨f@❨n❩❩, 𝐞❩ = ▼{A}❨k, f, 𝗱n◗𝐞❩.
// qed.
-lemma unwind_d_lcons_sn (A) (k) (p) (l) (n) (f):
+lemma unwind_d_lcons (A) (k) (p) (l) (n) (f):
▼❨k, 𝐮❨f@❨n❩❩, l◗p❩ = ▼{A}❨k, f, 𝗱n◗l◗p❩.
// qed.
(𝐞) = ▼[f]𝐞.
// qed.
-lemma unwind_path_d_empty_sn (f) (n):
+lemma unwind_path_d_empty (f) (n):
𝗱(f@❨n❩)◗𝐞 = ▼[f](𝗱n◗𝐞).
// qed.
-lemma unwind_path_d_lcons_sn (f) (p) (l) (n):
+lemma unwind_path_d_lcons (f) (p) (l) (n):
▼[𝐮❨f@❨n❩❩](l◗p) = ▼[f](𝗱n◗l◗p).
// qed.
#A #p @(path_ind_unwind … p) -p [| #n #IH | #n #l0 #q #IH |*: #q #IH ]
#k1 #k2 #Hk #f1 #f2 #Hf
[ <unwind_empty <unwind_empty /2 width=1 by/
-| <unwind_d_empty_sn <unwind_d_empty_sn <(tr_pap_eq_repl … Hf)
+| <unwind_d_empty <unwind_d_empty <(tr_pap_eq_repl … Hf)
/2 width=1 by stream_eq_refl/
-| <unwind_d_lcons_sn <unwind_d_lcons_sn
+| <unwind_d_lcons <unwind_d_lcons
/5 width=1 by tr_uni_eq_repl, tr_pap_eq_repl, eq_f/
| /2 width=1 by/
| /3 width=1 by tr_push_eq_repl/
lemma unwind_path_append_sn (p) (f) (q):
q●▼[f]p = ▼❨(λg,p. proj_path g (q●p)), f, p❩.
#p @(path_ind_unwind … p) -p // [ #n #l #p |*: #p ] #IH #f #q
-[ <unwind_d_lcons_sn <unwind_d_lcons_sn <IH -IH //
+[ <unwind_d_lcons <unwind_d_lcons <IH -IH //
| <unwind_m_sn <unwind_m_sn //
| <unwind_L_sn <unwind_L_sn >unwind_lcons_alt // >unwind_append_rcons_sn //
<IH <IH -IH <list_append_rcons_sn //
lemma unwind_path_after_id_sn (p) (f):
▼[𝐢]▼[f]p = ▼[f]p.
#p @(path_ind_unwind … p) -p // [ #n | #n #l #p | #p ] #IH #f
-[ <unwind_path_d_empty_sn //
-| <unwind_path_d_lcons_sn //
+[ <unwind_path_d_empty //
+| <unwind_path_d_lcons //
| <unwind_path_L_sn <unwind_path_L_sn //
]
qed.
#p2 #p1 @(path_ind_unwind … p1) -p1 //
[ #n | #n #l #p1 |*: #p1 ] #IH #f #Hp2
[ elim (ppc_inv_lcons … Hp2) -Hp2 #l #q #H destruct //
-| <unwind_path_d_lcons_sn <IH //
+| <unwind_path_d_lcons <IH //
| <unwind_path_m_sn <IH //
| <unwind_path_L_sn <IH //
| <unwind_path_A_sn <IH //
#k #q #p @(path_ind_unwind … p) -p
[| #n | #n #l #p |*: #p ] [|*: #IH ] #f
[ <unwind_path_empty #H destruct
-| <unwind_path_d_empty_sn #H destruct -IH
+| <unwind_path_d_empty #H destruct -IH
/2 width=5 by ex4_2_intro/
-| <unwind_path_d_lcons_sn #H
+| <unwind_path_d_lcons #H
elim (IH … H) -IH -H #r #h #Hr #Hh #Hq #Hp destruct
/2 width=5 by ex4_2_intro/
| <unwind_path_m_sn #H
#q #p @(path_ind_unwind … p) -p
[| #n | #n #l #p |*: #p ] [|*: #IH ] #f
[ <unwind_path_empty #H destruct
-| <unwind_path_d_empty_sn #H destruct
-| <unwind_path_d_lcons_sn #H /2 width=2 by/
+| <unwind_path_d_empty #H destruct
+| <unwind_path_d_lcons #H /2 width=2 by/
| <unwind_path_m_sn #H /2 width=2 by/
| <unwind_path_L_sn #H destruct
| <unwind_path_A_sn #H destruct
#q #p @(path_ind_unwind … p) -p
[| #n | #n #l #p |*: #p ] [|*: #IH ] #f
[ <unwind_path_empty #H destruct
-| <unwind_path_d_empty_sn #H destruct
-| <unwind_path_d_lcons_sn #H
+| <unwind_path_d_empty #H destruct
+| <unwind_path_d_lcons #H
elim (IH … H) -IH -H #r1 #r2 #Hr1 #Hq #Hp destruct
/2 width=5 by ex3_2_intro/
| <unwind_path_m_sn #H
#q #p @(path_ind_unwind … p) -p
[| #n | #n #l #p |*: #p ] [|*: #IH ] #f
[ <unwind_path_empty #H destruct
-| <unwind_path_d_empty_sn #H destruct
-| <unwind_path_d_lcons_sn #H
+| <unwind_path_d_empty #H destruct
+| <unwind_path_d_lcons #H
elim (IH … H) -IH -H #r1 #r2 #Hr1 #Hq #Hp destruct
/2 width=5 by ex3_2_intro/
| <unwind_path_m_sn #H
#q #p @(path_ind_unwind … p) -p
[| #n | #n #l #p |*: #p ] [|*: #IH ] #f
[ <unwind_path_empty #H destruct
-| <unwind_path_d_empty_sn #H destruct
-| <unwind_path_d_lcons_sn #H
+| <unwind_path_d_empty #H destruct
+| <unwind_path_d_lcons #H
elim (IH … H) -IH -H #r1 #r2 #Hr1 #Hq #Hp destruct
/2 width=5 by ex3_2_intro/
| <unwind_path_m_sn #H
(* Basic constructions with structure and depth ****************************)
lemma unwind_rmap_structure (p) (f):
- (⫯*[â\9d\98pâ\9d\98]f) = ▼[⊗p]f.
+ (⫯*[â\99p]f) = ▼[⊗p]f.
#p elim p -p //
* [ #n ] #p #IH #f //
[ <unwind_rmap_A_sn //
["∨"; "⩖"; "∪"; "∩"; "⋓"; "⋒" ] ;
["a"; "α"; "𝕒"; "𝐚"; "𝛂"; "ⓐ"; ] ;
["A"; "ℵ"; "𝔸"; "𝐀"; "Ⓐ"; "𝗔"; ] ;
- ["b"; "β"; "ß"; "𝕓"; "𝐛"; "𝛃"; "ⓑ"; ] ;
+ ["b"; "β"; "ß"; "𝕓"; "𝐛"; "𝛃"; "ⓑ"; "♭"; ] ;
["B"; "ℶ"; "ℬ"; "𝔹"; "𝐁"; "Ⓑ"; ] ;
["c"; "𝕔"; "𝐜"; "ⓒ"; ] ;
["C"; "ℭ"; "∁"; "𝐂"; "ℂ"; "Ⓒ"; ] ;