-sandwich.ma ordered_uniform.ma
-property_sigma.ma ordered_uniform.ma
-uniform.ma supremum.ma
bishop_set.ma ordered_set.ma
+extra.ma bishop_set_rewrite.ma
+ordered_set.ma cprop_connectives.ma
+cprop_connectives.ma logic/equality.ma
+bishop_set_rewrite.ma bishop_set.ma
sequence.ma nat/nat.ma
-ordered_uniform.ma uniform.ma
+uniform.ma supremum.ma
supremum.ma bishop_set.ma cprop_connectives.ma nat/plus.ma nat_ordered_set.ma ordered_set.ma sequence.ma
-property_exhaustivity.ma ordered_uniform.ma
-bishop_set_rewrite.ma bishop_set.ma
-cprop_connectives.ma logic/equality.ma
nat_ordered_set.ma cprop_connectives.ma nat/compare.ma ordered_set.ma
-ordered_set.ma cprop_connectives.ma
-extra.ma bishop_set_rewrite.ma
+property_sigma.ma ordered_uniform.ma
+ordered_uniform.ma uniform.ma
+property_exhaustivity.ma ordered_uniform.ma property_sigma.ma
+lebesgue.ma property_exhaustivity.ma sandwich.ma
+sandwich.ma ordered_uniform.ma
logic/equality.ma
nat/compare.ma
nat/nat.ma
--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+(* manca un pezzo del pullback, se inverto poi non tipa *)
+include "sandwich.ma".
+include "property_exhaustivity.ma".
+
+le x_i e y_i stanno o no nel segmento?
+
+(* Theorem 3.10 *)
+theorem lebesgue:
+ ∀C:ordered_uniform_space.
+ (∀l,u:C.order_continuity {[l,u]}) →
+ ∀a:sequence C.∀l,u:C.∀H:∀i:nat.a i ∈ [l,u].
+ ∀x:C.a order_converges x →
+ x ∈ [l,u] ∧
+ ∀h:x ∈ [l,u]. (* manca il pullback? *)
+ uniform_converge
+ (uniform_space_OF_ordered_uniform_space
+ (segment_ordered_uniform_space C l u))
+ (λn.sig_in C (λx.x∈[l,u]) (a n) (H n))
+ (sig_in ?? x h).
+intros; cases H2 (xi H4); cases H4 (yi H5); cases H5; clear H4 H5;
+cases H3; cases H5; cases H4; clear H3 H4 H5 H2;
+split;
+[2: intro h; cases (H l u (λn:nat.sig_in ?? (a n) (H1 n)) (sig_in ?? x h));
+
+
+(* Theorem 3.9 *)
+theorem lebesgue:
+ ∀C:ordered_uniform_space.property_sigma C →
+ (∀l,u:C.exhaustive {[l,u]}) →
+ ∀a:sequence C.∀l,u:C.∀H:∀i:nat.a i ∈ [l,u].
+ ∀x:C.a order_converges x →
+ x ∈ [l,u] ∧
+ ∀h:x ∈ [l,u]. (* manca il pullback? *)
+ uniform_converge
+ (uniform_space_OF_ordered_uniform_space
+ (segment_ordered_uniform_space C l u))
+ (λn.sig_in C (λx.x∈[l,u]) (a n) (H n))
+ (sig_in ?? x h).
+intros; cases H3 (xi H4); cases H4 (yi H5); cases H5; cases H6; cases H8;
+cases H9; cases H10; cases H11; clear H3 H4 H5 H6 H8 H9 H10 H11 H15 H16;
+lapply (uparrow_upperlocated ? xi x)as Ux;[2: split; assumption]
+lapply (downarrow_lowerlocated ? yi x)as Uy;[2: split; assumption]
+cases (restrict_uniform_convergence ? H ?? (H1 l u) (λn:nat.sig_in ?? (a n) (H2 n)) x);
+[ split; assumption]
+split; simplify;
+ [1: intro; cases (H7 n); cases H3;
+
+
+ lapply (sandwich ? x xi yi a );
+ [2: intro; cases (H7 i); cases H3; cases H4; split[apply (H5 0)|apply (H8 0)]
+ |3: intros 2;
+ cases (restrict_uniform_convergence ? H ?? (H1 l u) ? x);
+ [1:
+
+lapply (restrict_uniform_convergence ? H ?? (H1 l u)
+ (λn:nat.sig_in ?? (a n) (H2 n)) x);
+ [2:split; assumption]
\ No newline at end of file