(* per il set-indexing vedere capitolo BPTools (foundational tools), Sect. 0.3.4 complete
lattices, Definizione 0.9 *)
(* USARE L'ESISTENZIALE DEBOLE *)
+
+
+notation > "A × B ⇉2,1 C" non associative with precedence 70 for @{binary_morphism1 $A $B $C}.
+notation > "A × B ⇉2,2 C" non associative with precedence 70 for @{binary_morphism2 $A $B $C}.
+notation > "B ⇉1,1 C" non associative with precedence 80 for @{arrows1 SET $B $C}.
+notation > "B ⇉1,2 C" non associative with precedence 80 for @{unary_morphism2 $B $C}.
+notation > "hvbox(a break ≤ b)" non associative with precedence 45 for @{oa_leq $a $b}.
+notation > "a >< b" non associative with precedence 45 for @{oa_overlap $a $b}.
+notation > "⋁ p" non associative with precedence 45 for @{oa_join ? $p}.
+notation > "⋀ p" non associative with precedence 45 for @{oa_meet ? $p}.
record OAlgebra : Type2 := {
oa_P :> SET1;
- oa_leq : binary_morphism1 oa_P oa_P CPROP;
- oa_overlap: binary_morphism1 oa_P oa_P CPROP;
- oa_meet: ∀I:SET.unary_morphism2 (I ⇒ oa_P) oa_P;
- oa_join: ∀I:SET.unary_morphism2 (I ⇒ oa_P) oa_P;
+ oa_leq : oa_P × oa_P ⇉2,1 CPROP;
+ oa_overlap: oa_P × oa_P ⇉2,1 CPROP;
+ oa_meet: ∀I:SET.(I ⇒ oa_P) ⇉1,2 oa_P;
+ oa_join: ∀I:SET.(I ⇒ oa_P) ⇉1,2 oa_P;
oa_one: oa_P;
oa_zero: oa_P;
- oa_leq_refl: ∀a:oa_P. oa_leq a a;
- oa_leq_antisym: ∀a,b:oa_P.oa_leq a b → oa_leq b a → a = b;
- oa_leq_trans: ∀a,b,c:oa_P.oa_leq a b → oa_leq b c → oa_leq a c;
- oa_overlap_sym: ∀a,b:oa_P.oa_overlap a b → oa_overlap b a;
- oa_meet_inf:
- ∀I:SET.∀p_i:I ⇒ oa_P.∀p:oa_P.
- oa_leq p (oa_meet I p_i) = (∀i:I.oa_leq p (p_i i));
- oa_join_sup: ∀I:SET.∀p_i:I ⇒ oa_P.∀p:oa_P.oa_leq (oa_join I p_i) p = (∀i:I.oa_leq (p_i i) p);
- oa_zero_bot: ∀p:oa_P.oa_leq oa_zero p;
- oa_one_top: ∀p:oa_P.oa_leq p oa_one;
+ oa_leq_refl: ∀a:oa_P. a ≤ a;
+ oa_leq_antisym: ∀a,b:oa_P.a ≤ b → b ≤ a → a = b;
+ oa_leq_trans: ∀a,b,c:oa_P.a ≤ b → b ≤ c → a ≤ c;
+ oa_overlap_sym: ∀a,b:oa_P.a >< b → b >< a;
+ oa_meet_inf: ∀I:SET.∀p_i:I ⇒ oa_P.∀p:oa_P.p ≤ (⋀ p_i) = (∀i:I.p ≤ (p_i i));
+ oa_join_sup: ∀I:SET.∀p_i:I ⇒ oa_P.∀p:oa_P.(⋁ p_i) ≤ p = (∀i:I.p_i i ≤ p);
+ oa_zero_bot: ∀p:oa_P.oa_zero ≤ p;
+ oa_one_top: ∀p:oa_P.p ≤ oa_one;
oa_overlap_preserves_meet_:
- ∀p,q:oa_P.oa_overlap p q → oa_overlap p
- (oa_meet ? { x ∈ BOOL | match x with [ true ⇒ p | false ⇒ q ] | IF_THEN_ELSE_p oa_P p q });
- oa_join_split:
- ∀I:SET.∀p.∀q:I ⇒ oa_P.
- oa_overlap p (oa_join I q) = (∃i:I.oa_overlap p (q i));
+ ∀p,q:oa_P.p >< q →
+ p >< (⋀ { x ∈ BOOL | match x with [ true ⇒ p | false ⇒ q ] | IF_THEN_ELSE_p oa_P p q });
+ oa_join_split: ∀I:SET.∀p.∀q:I ⇒ oa_P.p >< (⋁ q) = (∃i:I.p >< (q i));
(*oa_base : setoid;
1) enum non e' il nome giusto perche' non e' suriettiva
2) manca (vedere altro capitolo) la "suriettivita'" come immagine di insiemi di oa_base
oa_enum : ums oa_base oa_P;
oa_density: ∀p,q.(∀i.oa_overlap p (oa_enum i) → oa_overlap q (oa_enum i)) → oa_leq p q
*)
- oa_density:
- ∀p,q.(∀r.oa_overlap p r → oa_overlap q r) → oa_leq p q
+ oa_density: ∀p,q.(∀r.p >< r → q >< r) → p ≤ q
}.
+notation "hvbox(a break ≤ b)" non associative with precedence 45 for @{ 'leq $a $b }.
+
interpretation "o-algebra leq" 'leq a b = (fun21 ??? (oa_leq ?) a b).
notation "hovbox(a mpadded width -150% (>)< b)" non associative with precedence 45