Cic.obj * Cic.metasenv * CicUniv.universe_graph
val insert_coercions: bool ref (* initially true *)
+val pack_coercions : bool ref
val pack_coercion_obj: Cic.obj -> Cic.obj
CoercDb.eq_carr t tgt_carr &&
if fst (CicReduction.are_convertible [] (CicUtil.term_of_uri u) bo
CicUniv.oblivion_ugraph)
- then true else
+ then
+ (HLog.warn
+ ("Skipping coercion " ^ UriManager.name_of_uri uri ^ " since " ^
+ "it is a duplicate of " ^ UriManager.string_of_uri u);
+ true)
+ else
(HLog.warn
("Coercions " ^
UriManager.string_of_uri u ^ " and " ^ UriManager.string_of_uri
let c = mk_lambda_spine c (namer (names_c1 @ names_c2)) spine_len in
debug_print (lazy ("COMPOSTA: " ^ CicPp.ppterm c));
let old_insert_coercions = !CicRefine.insert_coercions in
+ let old_pack_coercions = !CicRefine.pack_coercions in
let c, metasenv, univ, saturationsres, cpos =
try
CicRefine.insert_coercions := false;
+ CicRefine.pack_coercions := false;
let term, ty, metasenv, ugraph =
CicRefine.type_of_aux' metasenv context c univ
in
debug_print (lazy ("MENV: "^CicMetaSubst.ppmetasenv [] metasenv));
debug_print (lazy ("####################"));
CicRefine.insert_coercions := old_insert_coercions;
+ CicRefine.pack_coercions := old_pack_coercions;
term, metasenv, ugraph, saturationsres, cpos
with
| CicRefine.RefineFailure s
| CicRefine.Uncertain s -> debug_print s;
CicRefine.insert_coercions := old_insert_coercions;
+ CicRefine.pack_coercions := old_pack_coercions;
raise UnableToCompose
| exn ->
CicRefine.insert_coercions := old_insert_coercions;
+ CicRefine.pack_coercions := old_pack_coercions;
raise exn
in
c, metasenv, univ, saturationsres, arity2, cpos
(CicUtil.term_of_uri coer,
saturations2, arity2) [] [] univ
in
- if (menv = []) then
+ if (menv <> []) then
HLog.warn "MENV non empty after composing coercions";
let o,univ = build_obj t univ arityres in
(o,saturationsres,arityres,cposres),univ
intros; apply o; qed.
coercion setoid_of_SET.
-definition setoid1_of_SET: SET → setoid1.
- intro; whd in t; apply setoid1_of_setoid; apply t.
-qed.
-coercion setoid1_of_SET.
-
notation "hbox(a break ⇒ b)" right associative with precedence 20 for @{ 'Imply $a $b }.
interpretation "unary morphism" 'Imply a b = (arrows1 SET a b).
coercion Type1_OF_SET1.
definition Type_OF_setoid1_of_carr: ∀U. carr U → Type_OF_setoid1 ?(*(setoid1_of_SET U)*).
- [ apply setoid1_of_SET; apply U
+ [ apply rule U;
| intros; apply c;]
qed.
coercion Type_OF_setoid1_of_carr.
interpretation "unary morphism1 comprehension with proof" 'comprehension_by s \eta.f p =
(mk_unary_morphism1 s _ f p).
+definition carr' ≝ λx:Type_OF_category1 SET.Type_OF_Type0 (carr x).
+coercion carr'. (* we prefer the lower carrier projection *)
+
(* per il set-indexing vedere capitolo BPTools (foundational tools), Sect. 0.3.4 complete
lattices, Definizione 0.9 *)
(* USARE L'ESISTENZIALE DEBOLE *)
oa_P :> SET1;
oa_leq : binary_morphism1 oa_P oa_P CPROP; (* CPROP is setoid1, CPROP importante che sia small *)
oa_overlap: binary_morphism1 oa_P oa_P CPROP;
- oa_meet: ∀I:SET.unary_morphism2 (arrows2 SET1 I oa_P) oa_P;
- oa_join: ∀I:SET.unary_morphism2 (arrows2 SET1 I oa_P) oa_P;
+ oa_meet: ∀I:SET.unary_morphism2 (I ⇒ oa_P) oa_P;
+ oa_join: ∀I:SET.unary_morphism2 (I ⇒ oa_P) oa_P;
oa_one: oa_P;
oa_zero: oa_P;
oa_leq_refl: ∀a:oa_P. oa_leq a a;
oa_leq_trans: ∀a,b,c:oa_P.oa_leq a b → oa_leq b c → oa_leq a c;
oa_overlap_sym: ∀a,b:oa_P.oa_overlap a b → oa_overlap b a;
(* Errore: = in oa_meet_inf e oa_join_sup *)
- oa_meet_inf: ∀I.∀p_i.∀p:oa_P.oa_leq p (oa_meet I p_i) → ∀i:I.oa_leq p (p_i i);
- oa_join_sup: ∀I.∀p_i.∀p:oa_P.oa_leq (oa_join I p_i) p → ∀i:I.oa_leq (p_i i) p;
+ oa_meet_inf: ∀I:SET.∀p_i:I ⇒ oa_P.∀p:oa_P.oa_leq p (oa_meet I p_i) = ∀i:I.oa_leq p (p_i i);
+ oa_join_sup: ∀I:SET.∀p_i:I ⇒ oa_P.∀p:oa_P.oa_leq (oa_join I p_i) p = ∀i:I.oa_leq (p_i i) p;
oa_zero_bot: ∀p:oa_P.oa_leq oa_zero p;
oa_one_top: ∀p:oa_P.oa_leq p oa_one;
oa_overlap_preserves_meet_:
(oa_meet ? { x ∈ BOOL | match x with [ true ⇒ p | false ⇒ q ] | IF_THEN_ELSE_p oa_P p q });
(* ⇔ deve essere =, l'esiste debole *)
oa_join_split:
- ∀I:SET.∀p.∀q:arrows2 SET1 I oa_P.
- oa_overlap p (oa_join I q) ⇔ ∃i:carr I.oa_overlap p (q i);
+ ∀I:SET.∀p.∀q:I ⇒ oa_P.
+ oa_overlap p (oa_join I q) = ∃i:I.oa_overlap p (q i);
(*oa_base : setoid;
1) enum non e' il nome giusto perche' non e' suriettiva
2) manca (vedere altro capitolo) la "suriettivita'" come immagine di insiemi di oa_base