(* Problem 2: assertion failure raised by type checker on this object *)
+definition foo ≝
+\lambda g:G.\lambda c:C.\lambda t:T.
+\lambda P:T\to Prop.
+\lambda H:\forall t1:T.\forall H:tau0 g c t t1.P t1.
+\lambda H1:
+ \forall t1:T.\forall H1:tau1 g c t t1.
+ P t1 \to \forall t2:T.\forall H2:tau0 g c t1 t2.P t2.
+ let rec f (t1:T) (H2:tau1 g c t t1) on H2 ≝
+ match H2 return \lambda t2:T.\lambda H3:tau1 g c t t2.P t2 with
+ [ tau1_tau0 => \lambda t2:T.\lambda H3:(tau0 g c t t2).H t2 H3
+ | tau1_sing =>
+ \lambda t2:T.\lambda H3:(tau1 g c t t2).\lambda t3:T.
+ \lambda H4:tau0 g c t2 t3.H1 t2 H3 (f t2 H3) t3 H4
+ ]
+ in f.
+
+
inductive tau1 (g:G) (c:C) (t1:T): T \to Prop \def
| tau1_tau0: \forall (t2: T).((tau0 g c t1 t2) \to (tau1 g c t1 t2))
| tau1_sing: \forall (t: T).((tau1 g c t1 t) \to (\forall (t2: T).((tau0 g c
-t t2) \to (tau1 g c t1 t2)))).
+t t2) \to (tau1 g c t1 t2))))).