include "csubt/defs.ma".
-axiom csubt_gen_abbr:
+theorem csubt_inv_coq:
+ \forall (g: G).(\forall (c1: C).(\forall (c2: C).(\forall (P: ((G \to (C \to
+(C \to Prop))))).((((csubt g c1 c2) \to (\forall (n: nat).((eq C (CSort n)
+c1) \to ((eq C (CSort n) c2) \to (P g c1 c2)))))) \to ((((csubt g c1 c2) \to
+(\forall (c0: C).(\forall (c3: C).(\forall (k: K).(\forall (u: T).((eq C
+(CHead c0 k u) c1) \to ((eq C (CHead c3 k u) c2) \to ((csubt g c0 c3) \to (P
+g c1 c2)))))))))) \to ((((csubt g c1 c2) \to (\forall (c0: C).(\forall (c3:
+C).(\forall (b: B).(\forall (u1: T).(\forall (u2: T).((eq C (CHead c0 (Bind
+Void) u1) c1) \to ((eq C (CHead c3 (Bind b) u2) c2) \to ((csubt g c0 c3) \to
+((not (eq B b Void)) \to (P g c1 c2)))))))))))) \to ((((csubt g c1 c2) \to
+(\forall (c0: C).(\forall (c3: C).(\forall (u: T).(\forall (t: T).((eq C
+(CHead c0 (Bind Abst) t) c1) \to ((eq C (CHead c3 (Bind Abbr) u) c2) \to
+((csubt g c0 c3) \to ((ty3 g c3 u t) \to (P g c1 c2))))))))))) \to ((csubt g
+c1 c2) \to (P g c1 c2)))))))))
+\def
+ \lambda (g: G).(\lambda (c1: C).(\lambda (c2: C).(\lambda (P: ((G \to (C \to
+(C \to Prop))))).(\lambda (H: (((csubt g c1 c2) \to (\forall (n: nat).((eq C
+(CSort n) c1) \to ((eq C (CSort n) c2) \to (P g c1 c2))))))).(\lambda (H0:
+(((csubt g c1 c2) \to (\forall (c0: C).(\forall (c3: C).(\forall (k:
+K).(\forall (u: T).((eq C (CHead c0 k u) c1) \to ((eq C (CHead c3 k u) c2)
+\to ((csubt g c0 c3) \to (P g c1 c2))))))))))).(\lambda (H1: (((csubt g c1
+c2) \to (\forall (c0: C).(\forall (c3: C).(\forall (b: B).(\forall (u1:
+T).(\forall (u2: T).((eq C (CHead c0 (Bind Void) u1) c1) \to ((eq C (CHead c3
+(Bind b) u2) c2) \to ((csubt g c0 c3) \to ((not (eq B b Void)) \to (P g c1
+c2))))))))))))).(\lambda (H2: (((csubt g c1 c2) \to (\forall (c0: C).(\forall
+(c3: C).(\forall (u: T).(\forall (t: T).((eq C (CHead c0 (Bind Abst) t) c1)
+\to ((eq C (CHead c3 (Bind Abbr) u) c2) \to ((csubt g c0 c3) \to ((ty3 g c3 u
+t) \to (P g c1 c2)))))))))))).(\lambda (H3: (csubt g c1 c2)).(let H4 \def
+(match H3 in csubt return (\lambda (c: C).(\lambda (c0: C).(\lambda (_:
+(csubt ? c c0)).((eq C c c1) \to ((eq C c0 c2) \to (P g c1 c2)))))) with
+[(csubt_sort n) \Rightarrow (\lambda (H4: (eq C (CSort n) c1)).(\lambda (H5:
+(eq C (CSort n) c2)).(H H3 n H4 H5))) | (csubt_head c0 c3 H4 k u) \Rightarrow
+(\lambda (H5: (eq C (CHead c0 k u) c1)).(\lambda (H6: (eq C (CHead c3 k u)
+c2)).(H0 H3 c0 c3 k u H5 H6 H4))) | (csubt_void c0 c3 H4 b H5 u1 u2)
+\Rightarrow (\lambda (H6: (eq C (CHead c0 (Bind Void) u1) c1)).(\lambda (H7:
+(eq C (CHead c3 (Bind b) u2) c2)).(H1 H3 c0 c3 b u1 u2 H6 H7 H4 H5))) |
+(csubt_abst c0 c3 H4 u t H5) \Rightarrow (\lambda (H6: (eq C (CHead c0 (Bind
+Abst) t) c1)).(\lambda (H7: (eq C (CHead c3 (Bind Abbr) u) c2)).(H2 H3 c0 c3
+u t H6 H7 H4 H5)))]) in (H4 (refl_equal C c1) (refl_equal C c2))))))))))).
+
+theorem csubt_gen_abbr:
\forall (g: G).(\forall (e1: C).(\forall (c2: C).(\forall (v: T).((csubt g
(CHead e1 (Bind Abbr) v) c2) \to (ex2 C (\lambda (e2: C).(eq C c2 (CHead e2
(Bind Abbr) v))) (\lambda (e2: C).(csubt g e1 e2)))))))
-.
+\def
+ \lambda (g: G).(\lambda (e1: C).(\lambda (c2: C).(\lambda (v: T).(\lambda
+(H: (csubt g (CHead e1 (Bind Abbr) v) c2)).(csubt_inv_coq g (CHead e1 (Bind
+Abbr) v) c2 (\lambda (g0: G).(\lambda (_: C).(\lambda (c0: C).(ex2 C (\lambda
+(e2: C).(eq C c0 (CHead e2 (Bind Abbr) v))) (\lambda (e2: C).(csubt g0 e1
+e2)))))) (\lambda (H0: (csubt g (CHead e1 (Bind Abbr) v) c2)).(\lambda (n:
+nat).(\lambda (H1: (eq C (CSort n) (CHead e1 (Bind Abbr) v))).(\lambda (H2:
+(eq C (CSort n) c2)).(let H3 \def (eq_ind_r C c2 (\lambda (c: C).(csubt g
+(CHead e1 (Bind Abbr) v) c)) H0 (CSort n) H2) in (let H4 \def (eq_ind_r C c2
+(\lambda (c: C).(csubt g (CHead e1 (Bind Abbr) v) c)) H (CSort n) H2) in
+(eq_ind C (CSort n) (\lambda (c: C).(ex2 C (\lambda (e2: C).(eq C c (CHead e2
+(Bind Abbr) v))) (\lambda (e2: C).(csubt g e1 e2)))) (let H5 \def (eq_ind C
+(CSort n) (\lambda (ee: C).(match ee in C return (\lambda (_: C).Prop) with
+[(CSort _) \Rightarrow True | (CHead _ _ _) \Rightarrow False])) I (CHead e1
+(Bind Abbr) v) H1) in (False_ind (ex2 C (\lambda (e2: C).(eq C (CSort n)
+(CHead e2 (Bind Abbr) v))) (\lambda (e2: C).(csubt g e1 e2))) H5)) c2
+H2))))))) (\lambda (H0: (csubt g (CHead e1 (Bind Abbr) v) c2)).(\lambda (c0:
+C).(\lambda (c3: C).(\lambda (k: K).(\lambda (u: T).(\lambda (H1: (eq C
+(CHead c0 k u) (CHead e1 (Bind Abbr) v))).(\lambda (H2: (eq C (CHead c3 k u)
+c2)).(\lambda (H3: (csubt g c0 c3)).(let H4 \def (eq_ind_r C c2 (\lambda (c:
+C).(csubt g (CHead e1 (Bind Abbr) v) c)) H0 (CHead c3 k u) H2) in (let H5
+\def (eq_ind_r C c2 (\lambda (c: C).(csubt g (CHead e1 (Bind Abbr) v) c)) H
+(CHead c3 k u) H2) in (eq_ind C (CHead c3 k u) (\lambda (c: C).(ex2 C
+(\lambda (e2: C).(eq C c (CHead e2 (Bind Abbr) v))) (\lambda (e2: C).(csubt g
+e1 e2)))) (let H6 \def (f_equal C C (\lambda (e: C).(match e in C return
+(\lambda (_: C).C) with [(CSort _) \Rightarrow c0 | (CHead c _ _) \Rightarrow
+c])) (CHead c0 k u) (CHead e1 (Bind Abbr) v) H1) in ((let H7 \def (f_equal C
+K (\lambda (e: C).(match e in C return (\lambda (_: C).K) with [(CSort _)
+\Rightarrow k | (CHead _ k0 _) \Rightarrow k0])) (CHead c0 k u) (CHead e1
+(Bind Abbr) v) H1) in ((let H8 \def (f_equal C T (\lambda (e: C).(match e in
+C return (\lambda (_: C).T) with [(CSort _) \Rightarrow u | (CHead _ _ t)
+\Rightarrow t])) (CHead c0 k u) (CHead e1 (Bind Abbr) v) H1) in (\lambda (H9:
+(eq K k (Bind Abbr))).(\lambda (H10: (eq C c0 e1)).(let H11 \def (eq_ind T u
+(\lambda (t: T).(csubt g (CHead e1 (Bind Abbr) v) (CHead c3 k t))) H5 v H8)
+in (let H12 \def (eq_ind T u (\lambda (t: T).(csubt g (CHead e1 (Bind Abbr)
+v) (CHead c3 k t))) H4 v H8) in (eq_ind_r T v (\lambda (t: T).(ex2 C (\lambda
+(e2: C).(eq C (CHead c3 k t) (CHead e2 (Bind Abbr) v))) (\lambda (e2:
+C).(csubt g e1 e2)))) (let H13 \def (eq_ind K k (\lambda (k0: K).(csubt g
+(CHead e1 (Bind Abbr) v) (CHead c3 k0 v))) H11 (Bind Abbr) H9) in (let H14
+\def (eq_ind K k (\lambda (k0: K).(csubt g (CHead e1 (Bind Abbr) v) (CHead c3
+k0 v))) H12 (Bind Abbr) H9) in (eq_ind_r K (Bind Abbr) (\lambda (k0: K).(ex2
+C (\lambda (e2: C).(eq C (CHead c3 k0 v) (CHead e2 (Bind Abbr) v))) (\lambda
+(e2: C).(csubt g e1 e2)))) (let H15 \def (eq_ind C c0 (\lambda (c: C).(csubt
+g c c3)) H3 e1 H10) in (ex_intro2 C (\lambda (e2: C).(eq C (CHead c3 (Bind
+Abbr) v) (CHead e2 (Bind Abbr) v))) (\lambda (e2: C).(csubt g e1 e2)) c3
+(refl_equal C (CHead c3 (Bind Abbr) v)) H15)) k H9))) u H8)))))) H7)) H6)) c2
+H2))))))))))) (\lambda (H0: (csubt g (CHead e1 (Bind Abbr) v) c2)).(\lambda
+(c0: C).(\lambda (c3: C).(\lambda (b: B).(\lambda (u1: T).(\lambda (u2:
+T).(\lambda (H2: (eq C (CHead c0 (Bind Void) u1) (CHead e1 (Bind Abbr)
+v))).(\lambda (H3: (eq C (CHead c3 (Bind b) u2) c2)).(\lambda (_: (csubt g c0
+c3)).(\lambda (_: (not (eq B b Void))).(let H5 \def (eq_ind_r C c2 (\lambda
+(c: C).(csubt g (CHead e1 (Bind Abbr) v) c)) H0 (CHead c3 (Bind b) u2) H3) in
+(let H6 \def (eq_ind_r C c2 (\lambda (c: C).(csubt g (CHead e1 (Bind Abbr) v)
+c)) H (CHead c3 (Bind b) u2) H3) in (eq_ind C (CHead c3 (Bind b) u2) (\lambda
+(c: C).(ex2 C (\lambda (e2: C).(eq C c (CHead e2 (Bind Abbr) v))) (\lambda
+(e2: C).(csubt g e1 e2)))) (let H7 \def (eq_ind C (CHead c0 (Bind Void) u1)
+(\lambda (ee: C).(match ee in C return (\lambda (_: C).Prop) with [(CSort _)
+\Rightarrow False | (CHead _ k _) \Rightarrow (match k in K return (\lambda
+(_: K).Prop) with [(Bind b0) \Rightarrow (match b0 in B return (\lambda (_:
+B).Prop) with [Abbr \Rightarrow False | Abst \Rightarrow False | Void
+\Rightarrow True]) | (Flat _) \Rightarrow False])])) I (CHead e1 (Bind Abbr)
+v) H2) in (False_ind (ex2 C (\lambda (e2: C).(eq C (CHead c3 (Bind b) u2)
+(CHead e2 (Bind Abbr) v))) (\lambda (e2: C).(csubt g e1 e2))) H7)) c2
+H3))))))))))))) (\lambda (H0: (csubt g (CHead e1 (Bind Abbr) v) c2)).(\lambda
+(c0: C).(\lambda (c3: C).(\lambda (u: T).(\lambda (t: T).(\lambda (H2: (eq C
+(CHead c0 (Bind Abst) t) (CHead e1 (Bind Abbr) v))).(\lambda (H3: (eq C
+(CHead c3 (Bind Abbr) u) c2)).(\lambda (_: (csubt g c0 c3)).(\lambda (_: (ty3
+g c3 u t)).(let H5 \def (eq_ind_r C c2 (\lambda (c: C).(csubt g (CHead e1
+(Bind Abbr) v) c)) H0 (CHead c3 (Bind Abbr) u) H3) in (let H6 \def (eq_ind_r
+C c2 (\lambda (c: C).(csubt g (CHead e1 (Bind Abbr) v) c)) H (CHead c3 (Bind
+Abbr) u) H3) in (eq_ind C (CHead c3 (Bind Abbr) u) (\lambda (c: C).(ex2 C
+(\lambda (e2: C).(eq C c (CHead e2 (Bind Abbr) v))) (\lambda (e2: C).(csubt g
+e1 e2)))) (let H7 \def (eq_ind C (CHead c0 (Bind Abst) t) (\lambda (ee:
+C).(match ee in C return (\lambda (_: C).Prop) with [(CSort _) \Rightarrow
+False | (CHead _ k _) \Rightarrow (match k in K return (\lambda (_: K).Prop)
+with [(Bind b) \Rightarrow (match b in B return (\lambda (_: B).Prop) with
+[Abbr \Rightarrow False | Abst \Rightarrow True | Void \Rightarrow False]) |
+(Flat _) \Rightarrow False])])) I (CHead e1 (Bind Abbr) v) H2) in (False_ind
+(ex2 C (\lambda (e2: C).(eq C (CHead c3 (Bind Abbr) u) (CHead e2 (Bind Abbr)
+v))) (\lambda (e2: C).(csubt g e1 e2))) H7)) c2 H3)))))))))))) H))))).
-axiom csubt_gen_abst:
+theorem csubt_gen_abst:
\forall (g: G).(\forall (e1: C).(\forall (c2: C).(\forall (v1: T).((csubt g
(CHead e1 (Bind Abst) v1) c2) \to (or (ex2 C (\lambda (e2: C).(eq C c2 (CHead
e2 (Bind Abst) v1))) (\lambda (e2: C).(csubt g e1 e2))) (ex3_2 C T (\lambda
(e2: C).(\lambda (v2: T).(eq C c2 (CHead e2 (Bind Abbr) v2)))) (\lambda (e2:
C).(\lambda (_: T).(csubt g e1 e2))) (\lambda (e2: C).(\lambda (v2: T).(ty3 g
e2 v2 v1)))))))))
-.
+\def
+ \lambda (g: G).(\lambda (e1: C).(\lambda (c2: C).(\lambda (v1: T).(\lambda
+(H: (csubt g (CHead e1 (Bind Abst) v1) c2)).(csubt_inv_coq g (CHead e1 (Bind
+Abst) v1) c2 (\lambda (g0: G).(\lambda (_: C).(\lambda (c0: C).(or (ex2 C
+(\lambda (e2: C).(eq C c0 (CHead e2 (Bind Abst) v1))) (\lambda (e2: C).(csubt
+g0 e1 e2))) (ex3_2 C T (\lambda (e2: C).(\lambda (v2: T).(eq C c0 (CHead e2
+(Bind Abbr) v2)))) (\lambda (e2: C).(\lambda (_: T).(csubt g0 e1 e2)))
+(\lambda (e2: C).(\lambda (v2: T).(ty3 g0 e2 v2 v1)))))))) (\lambda (H0:
+(csubt g (CHead e1 (Bind Abst) v1) c2)).(\lambda (n: nat).(\lambda (H1: (eq C
+(CSort n) (CHead e1 (Bind Abst) v1))).(\lambda (H2: (eq C (CSort n) c2)).(let
+H3 \def (eq_ind_r C c2 (\lambda (c: C).(csubt g (CHead e1 (Bind Abst) v1) c))
+H0 (CSort n) H2) in (let H4 \def (eq_ind_r C c2 (\lambda (c: C).(csubt g
+(CHead e1 (Bind Abst) v1) c)) H (CSort n) H2) in (eq_ind C (CSort n) (\lambda
+(c: C).(or (ex2 C (\lambda (e2: C).(eq C c (CHead e2 (Bind Abst) v1)))
+(\lambda (e2: C).(csubt g e1 e2))) (ex3_2 C T (\lambda (e2: C).(\lambda (v2:
+T).(eq C c (CHead e2 (Bind Abbr) v2)))) (\lambda (e2: C).(\lambda (_:
+T).(csubt g e1 e2))) (\lambda (e2: C).(\lambda (v2: T).(ty3 g e2 v2 v1))))))
+(let H5 \def (eq_ind C (CSort n) (\lambda (ee: C).(match ee in C return
+(\lambda (_: C).Prop) with [(CSort _) \Rightarrow True | (CHead _ _ _)
+\Rightarrow False])) I (CHead e1 (Bind Abst) v1) H1) in (False_ind (or (ex2 C
+(\lambda (e2: C).(eq C (CSort n) (CHead e2 (Bind Abst) v1))) (\lambda (e2:
+C).(csubt g e1 e2))) (ex3_2 C T (\lambda (e2: C).(\lambda (v2: T).(eq C
+(CSort n) (CHead e2 (Bind Abbr) v2)))) (\lambda (e2: C).(\lambda (_:
+T).(csubt g e1 e2))) (\lambda (e2: C).(\lambda (v2: T).(ty3 g e2 v2 v1)))))
+H5)) c2 H2))))))) (\lambda (H0: (csubt g (CHead e1 (Bind Abst) v1)
+c2)).(\lambda (c0: C).(\lambda (c3: C).(\lambda (k: K).(\lambda (u:
+T).(\lambda (H1: (eq C (CHead c0 k u) (CHead e1 (Bind Abst) v1))).(\lambda
+(H2: (eq C (CHead c3 k u) c2)).(\lambda (H3: (csubt g c0 c3)).(let H4 \def
+(eq_ind_r C c2 (\lambda (c: C).(csubt g (CHead e1 (Bind Abst) v1) c)) H0
+(CHead c3 k u) H2) in (let H5 \def (eq_ind_r C c2 (\lambda (c: C).(csubt g
+(CHead e1 (Bind Abst) v1) c)) H (CHead c3 k u) H2) in (eq_ind C (CHead c3 k
+u) (\lambda (c: C).(or (ex2 C (\lambda (e2: C).(eq C c (CHead e2 (Bind Abst)
+v1))) (\lambda (e2: C).(csubt g e1 e2))) (ex3_2 C T (\lambda (e2: C).(\lambda
+(v2: T).(eq C c (CHead e2 (Bind Abbr) v2)))) (\lambda (e2: C).(\lambda (_:
+T).(csubt g e1 e2))) (\lambda (e2: C).(\lambda (v2: T).(ty3 g e2 v2 v1))))))
+(let H6 \def (f_equal C C (\lambda (e: C).(match e in C return (\lambda (_:
+C).C) with [(CSort _) \Rightarrow c0 | (CHead c _ _) \Rightarrow c])) (CHead
+c0 k u) (CHead e1 (Bind Abst) v1) H1) in ((let H7 \def (f_equal C K (\lambda
+(e: C).(match e in C return (\lambda (_: C).K) with [(CSort _) \Rightarrow k
+| (CHead _ k0 _) \Rightarrow k0])) (CHead c0 k u) (CHead e1 (Bind Abst) v1)
+H1) in ((let H8 \def (f_equal C T (\lambda (e: C).(match e in C return
+(\lambda (_: C).T) with [(CSort _) \Rightarrow u | (CHead _ _ t) \Rightarrow
+t])) (CHead c0 k u) (CHead e1 (Bind Abst) v1) H1) in (\lambda (H9: (eq K k
+(Bind Abst))).(\lambda (H10: (eq C c0 e1)).(let H11 \def (eq_ind T u (\lambda
+(t: T).(csubt g (CHead e1 (Bind Abst) v1) (CHead c3 k t))) H5 v1 H8) in (let
+H12 \def (eq_ind T u (\lambda (t: T).(csubt g (CHead e1 (Bind Abst) v1)
+(CHead c3 k t))) H4 v1 H8) in (eq_ind_r T v1 (\lambda (t: T).(or (ex2 C
+(\lambda (e2: C).(eq C (CHead c3 k t) (CHead e2 (Bind Abst) v1))) (\lambda
+(e2: C).(csubt g e1 e2))) (ex3_2 C T (\lambda (e2: C).(\lambda (v2: T).(eq C
+(CHead c3 k t) (CHead e2 (Bind Abbr) v2)))) (\lambda (e2: C).(\lambda (_:
+T).(csubt g e1 e2))) (\lambda (e2: C).(\lambda (v2: T).(ty3 g e2 v2 v1))))))
+(let H13 \def (eq_ind K k (\lambda (k0: K).(csubt g (CHead e1 (Bind Abst) v1)
+(CHead c3 k0 v1))) H11 (Bind Abst) H9) in (let H14 \def (eq_ind K k (\lambda
+(k0: K).(csubt g (CHead e1 (Bind Abst) v1) (CHead c3 k0 v1))) H12 (Bind Abst)
+H9) in (eq_ind_r K (Bind Abst) (\lambda (k0: K).(or (ex2 C (\lambda (e2:
+C).(eq C (CHead c3 k0 v1) (CHead e2 (Bind Abst) v1))) (\lambda (e2: C).(csubt
+g e1 e2))) (ex3_2 C T (\lambda (e2: C).(\lambda (v2: T).(eq C (CHead c3 k0
+v1) (CHead e2 (Bind Abbr) v2)))) (\lambda (e2: C).(\lambda (_: T).(csubt g e1
+e2))) (\lambda (e2: C).(\lambda (v2: T).(ty3 g e2 v2 v1)))))) (let H15 \def
+(eq_ind C c0 (\lambda (c: C).(csubt g c c3)) H3 e1 H10) in (or_introl (ex2 C
+(\lambda (e2: C).(eq C (CHead c3 (Bind Abst) v1) (CHead e2 (Bind Abst) v1)))
+(\lambda (e2: C).(csubt g e1 e2))) (ex3_2 C T (\lambda (e2: C).(\lambda (v2:
+T).(eq C (CHead c3 (Bind Abst) v1) (CHead e2 (Bind Abbr) v2)))) (\lambda (e2:
+C).(\lambda (_: T).(csubt g e1 e2))) (\lambda (e2: C).(\lambda (v2: T).(ty3 g
+e2 v2 v1)))) (ex_intro2 C (\lambda (e2: C).(eq C (CHead c3 (Bind Abst) v1)
+(CHead e2 (Bind Abst) v1))) (\lambda (e2: C).(csubt g e1 e2)) c3 (refl_equal
+C (CHead c3 (Bind Abst) v1)) H15))) k H9))) u H8)))))) H7)) H6)) c2
+H2))))))))))) (\lambda (H0: (csubt g (CHead e1 (Bind Abst) v1) c2)).(\lambda
+(c0: C).(\lambda (c3: C).(\lambda (b: B).(\lambda (u1: T).(\lambda (u2:
+T).(\lambda (H2: (eq C (CHead c0 (Bind Void) u1) (CHead e1 (Bind Abst)
+v1))).(\lambda (H3: (eq C (CHead c3 (Bind b) u2) c2)).(\lambda (_: (csubt g
+c0 c3)).(\lambda (_: (not (eq B b Void))).(let H5 \def (eq_ind_r C c2
+(\lambda (c: C).(csubt g (CHead e1 (Bind Abst) v1) c)) H0 (CHead c3 (Bind b)
+u2) H3) in (let H6 \def (eq_ind_r C c2 (\lambda (c: C).(csubt g (CHead e1
+(Bind Abst) v1) c)) H (CHead c3 (Bind b) u2) H3) in (eq_ind C (CHead c3 (Bind
+b) u2) (\lambda (c: C).(or (ex2 C (\lambda (e2: C).(eq C c (CHead e2 (Bind
+Abst) v1))) (\lambda (e2: C).(csubt g e1 e2))) (ex3_2 C T (\lambda (e2:
+C).(\lambda (v2: T).(eq C c (CHead e2 (Bind Abbr) v2)))) (\lambda (e2:
+C).(\lambda (_: T).(csubt g e1 e2))) (\lambda (e2: C).(\lambda (v2: T).(ty3 g
+e2 v2 v1)))))) (let H7 \def (eq_ind C (CHead c0 (Bind Void) u1) (\lambda (ee:
+C).(match ee in C return (\lambda (_: C).Prop) with [(CSort _) \Rightarrow
+False | (CHead _ k _) \Rightarrow (match k in K return (\lambda (_: K).Prop)
+with [(Bind b0) \Rightarrow (match b0 in B return (\lambda (_: B).Prop) with
+[Abbr \Rightarrow False | Abst \Rightarrow False | Void \Rightarrow True]) |
+(Flat _) \Rightarrow False])])) I (CHead e1 (Bind Abst) v1) H2) in (False_ind
+(or (ex2 C (\lambda (e2: C).(eq C (CHead c3 (Bind b) u2) (CHead e2 (Bind
+Abst) v1))) (\lambda (e2: C).(csubt g e1 e2))) (ex3_2 C T (\lambda (e2:
+C).(\lambda (v2: T).(eq C (CHead c3 (Bind b) u2) (CHead e2 (Bind Abbr) v2))))
+(\lambda (e2: C).(\lambda (_: T).(csubt g e1 e2))) (\lambda (e2: C).(\lambda
+(v2: T).(ty3 g e2 v2 v1))))) H7)) c2 H3))))))))))))) (\lambda (H0: (csubt g
+(CHead e1 (Bind Abst) v1) c2)).(\lambda (c0: C).(\lambda (c3: C).(\lambda (u:
+T).(\lambda (t: T).(\lambda (H2: (eq C (CHead c0 (Bind Abst) t) (CHead e1
+(Bind Abst) v1))).(\lambda (H3: (eq C (CHead c3 (Bind Abbr) u) c2)).(\lambda
+(H1: (csubt g c0 c3)).(\lambda (H4: (ty3 g c3 u t)).(let H5 \def (eq_ind_r C
+c2 (\lambda (c: C).(csubt g (CHead e1 (Bind Abst) v1) c)) H0 (CHead c3 (Bind
+Abbr) u) H3) in (let H6 \def (eq_ind_r C c2 (\lambda (c: C).(csubt g (CHead
+e1 (Bind Abst) v1) c)) H (CHead c3 (Bind Abbr) u) H3) in (eq_ind C (CHead c3
+(Bind Abbr) u) (\lambda (c: C).(or (ex2 C (\lambda (e2: C).(eq C c (CHead e2
+(Bind Abst) v1))) (\lambda (e2: C).(csubt g e1 e2))) (ex3_2 C T (\lambda (e2:
+C).(\lambda (v2: T).(eq C c (CHead e2 (Bind Abbr) v2)))) (\lambda (e2:
+C).(\lambda (_: T).(csubt g e1 e2))) (\lambda (e2: C).(\lambda (v2: T).(ty3 g
+e2 v2 v1)))))) (let H7 \def (f_equal C C (\lambda (e: C).(match e in C return
+(\lambda (_: C).C) with [(CSort _) \Rightarrow c0 | (CHead c _ _) \Rightarrow
+c])) (CHead c0 (Bind Abst) t) (CHead e1 (Bind Abst) v1) H2) in ((let H8 \def
+(f_equal C T (\lambda (e: C).(match e in C return (\lambda (_: C).T) with
+[(CSort _) \Rightarrow t | (CHead _ _ t0) \Rightarrow t0])) (CHead c0 (Bind
+Abst) t) (CHead e1 (Bind Abst) v1) H2) in (\lambda (H9: (eq C c0 e1)).(let
+H10 \def (eq_ind T t (\lambda (t0: T).(ty3 g c3 u t0)) H4 v1 H8) in (let H11
+\def (eq_ind C c0 (\lambda (c: C).(csubt g c c3)) H1 e1 H9) in (or_intror
+(ex2 C (\lambda (e2: C).(eq C (CHead c3 (Bind Abbr) u) (CHead e2 (Bind Abst)
+v1))) (\lambda (e2: C).(csubt g e1 e2))) (ex3_2 C T (\lambda (e2: C).(\lambda
+(v2: T).(eq C (CHead c3 (Bind Abbr) u) (CHead e2 (Bind Abbr) v2)))) (\lambda
+(e2: C).(\lambda (_: T).(csubt g e1 e2))) (\lambda (e2: C).(\lambda (v2:
+T).(ty3 g e2 v2 v1)))) (ex3_2_intro C T (\lambda (e2: C).(\lambda (v2: T).(eq
+C (CHead c3 (Bind Abbr) u) (CHead e2 (Bind Abbr) v2)))) (\lambda (e2:
+C).(\lambda (_: T).(csubt g e1 e2))) (\lambda (e2: C).(\lambda (v2: T).(ty3 g
+e2 v2 v1))) c3 u (refl_equal C (CHead c3 (Bind Abbr) u)) H11 H10)))))) H7))
+c2 H3)))))))))))) H))))).
-axiom csubt_gen_bind:
+theorem csubt_gen_bind:
\forall (g: G).(\forall (b1: B).(\forall (e1: C).(\forall (c2: C).(\forall
(v1: T).((csubt g (CHead e1 (Bind b1) v1) c2) \to (ex2_3 B C T (\lambda (b2:
B).(\lambda (e2: C).(\lambda (v2: T).(eq C c2 (CHead e2 (Bind b2) v2)))))
(\lambda (_: B).(\lambda (e2: C).(\lambda (_: T).(csubt g e1 e2))))))))))
-.
+\def
+ \lambda (g: G).(\lambda (b1: B).(\lambda (e1: C).(\lambda (c2: C).(\lambda
+(v1: T).(\lambda (H: (csubt g (CHead e1 (Bind b1) v1) c2)).(csubt_inv_coq g
+(CHead e1 (Bind b1) v1) c2 (\lambda (g0: G).(\lambda (_: C).(\lambda (c0:
+C).(ex2_3 B C T (\lambda (b2: B).(\lambda (e2: C).(\lambda (v2: T).(eq C c0
+(CHead e2 (Bind b2) v2))))) (\lambda (_: B).(\lambda (e2: C).(\lambda (_:
+T).(csubt g0 e1 e2)))))))) (\lambda (H0: (csubt g (CHead e1 (Bind b1) v1)
+c2)).(\lambda (n: nat).(\lambda (H1: (eq C (CSort n) (CHead e1 (Bind b1)
+v1))).(\lambda (H2: (eq C (CSort n) c2)).(let H3 \def (eq_ind_r C c2 (\lambda
+(c: C).(csubt g (CHead e1 (Bind b1) v1) c)) H0 (CSort n) H2) in (let H4 \def
+(eq_ind_r C c2 (\lambda (c: C).(csubt g (CHead e1 (Bind b1) v1) c)) H (CSort
+n) H2) in (eq_ind C (CSort n) (\lambda (c: C).(ex2_3 B C T (\lambda (b2:
+B).(\lambda (e2: C).(\lambda (v2: T).(eq C c (CHead e2 (Bind b2) v2)))))
+(\lambda (_: B).(\lambda (e2: C).(\lambda (_: T).(csubt g e1 e2)))))) (let H5
+\def (eq_ind C (CSort n) (\lambda (ee: C).(match ee in C return (\lambda (_:
+C).Prop) with [(CSort _) \Rightarrow True | (CHead _ _ _) \Rightarrow
+False])) I (CHead e1 (Bind b1) v1) H1) in (False_ind (ex2_3 B C T (\lambda
+(b2: B).(\lambda (e2: C).(\lambda (v2: T).(eq C (CSort n) (CHead e2 (Bind b2)
+v2))))) (\lambda (_: B).(\lambda (e2: C).(\lambda (_: T).(csubt g e1 e2)))))
+H5)) c2 H2))))))) (\lambda (H0: (csubt g (CHead e1 (Bind b1) v1)
+c2)).(\lambda (c0: C).(\lambda (c3: C).(\lambda (k: K).(\lambda (u:
+T).(\lambda (H1: (eq C (CHead c0 k u) (CHead e1 (Bind b1) v1))).(\lambda (H2:
+(eq C (CHead c3 k u) c2)).(\lambda (H3: (csubt g c0 c3)).(let H4 \def
+(eq_ind_r C c2 (\lambda (c: C).(csubt g (CHead e1 (Bind b1) v1) c)) H0 (CHead
+c3 k u) H2) in (let H5 \def (eq_ind_r C c2 (\lambda (c: C).(csubt g (CHead e1
+(Bind b1) v1) c)) H (CHead c3 k u) H2) in (eq_ind C (CHead c3 k u) (\lambda
+(c: C).(ex2_3 B C T (\lambda (b2: B).(\lambda (e2: C).(\lambda (v2: T).(eq C
+c (CHead e2 (Bind b2) v2))))) (\lambda (_: B).(\lambda (e2: C).(\lambda (_:
+T).(csubt g e1 e2)))))) (let H6 \def (f_equal C C (\lambda (e: C).(match e in
+C return (\lambda (_: C).C) with [(CSort _) \Rightarrow c0 | (CHead c _ _)
+\Rightarrow c])) (CHead c0 k u) (CHead e1 (Bind b1) v1) H1) in ((let H7 \def
+(f_equal C K (\lambda (e: C).(match e in C return (\lambda (_: C).K) with
+[(CSort _) \Rightarrow k | (CHead _ k0 _) \Rightarrow k0])) (CHead c0 k u)
+(CHead e1 (Bind b1) v1) H1) in ((let H8 \def (f_equal C T (\lambda (e:
+C).(match e in C return (\lambda (_: C).T) with [(CSort _) \Rightarrow u |
+(CHead _ _ t) \Rightarrow t])) (CHead c0 k u) (CHead e1 (Bind b1) v1) H1) in
+(\lambda (H9: (eq K k (Bind b1))).(\lambda (H10: (eq C c0 e1)).(let H11 \def
+(eq_ind T u (\lambda (t: T).(csubt g (CHead e1 (Bind b1) v1) (CHead c3 k t)))
+H5 v1 H8) in (let H12 \def (eq_ind T u (\lambda (t: T).(csubt g (CHead e1
+(Bind b1) v1) (CHead c3 k t))) H4 v1 H8) in (eq_ind_r T v1 (\lambda (t:
+T).(ex2_3 B C T (\lambda (b2: B).(\lambda (e2: C).(\lambda (v2: T).(eq C
+(CHead c3 k t) (CHead e2 (Bind b2) v2))))) (\lambda (_: B).(\lambda (e2:
+C).(\lambda (_: T).(csubt g e1 e2)))))) (let H13 \def (eq_ind K k (\lambda
+(k0: K).(csubt g (CHead e1 (Bind b1) v1) (CHead c3 k0 v1))) H11 (Bind b1) H9)
+in (let H14 \def (eq_ind K k (\lambda (k0: K).(csubt g (CHead e1 (Bind b1)
+v1) (CHead c3 k0 v1))) H12 (Bind b1) H9) in (eq_ind_r K (Bind b1) (\lambda
+(k0: K).(ex2_3 B C T (\lambda (b2: B).(\lambda (e2: C).(\lambda (v2: T).(eq C
+(CHead c3 k0 v1) (CHead e2 (Bind b2) v2))))) (\lambda (_: B).(\lambda (e2:
+C).(\lambda (_: T).(csubt g e1 e2)))))) (let H15 \def (eq_ind C c0 (\lambda
+(c: C).(csubt g c c3)) H3 e1 H10) in (ex2_3_intro B C T (\lambda (b2:
+B).(\lambda (e2: C).(\lambda (v2: T).(eq C (CHead c3 (Bind b1) v1) (CHead e2
+(Bind b2) v2))))) (\lambda (_: B).(\lambda (e2: C).(\lambda (_: T).(csubt g
+e1 e2)))) b1 c3 v1 (refl_equal C (CHead c3 (Bind b1) v1)) H15)) k H9))) u
+H8)))))) H7)) H6)) c2 H2))))))))))) (\lambda (H0: (csubt g (CHead e1 (Bind
+b1) v1) c2)).(\lambda (c0: C).(\lambda (c3: C).(\lambda (b: B).(\lambda (u1:
+T).(\lambda (u2: T).(\lambda (H2: (eq C (CHead c0 (Bind Void) u1) (CHead e1
+(Bind b1) v1))).(\lambda (H3: (eq C (CHead c3 (Bind b) u2) c2)).(\lambda (H1:
+(csubt g c0 c3)).(\lambda (_: (not (eq B b Void))).(let H5 \def (eq_ind_r C
+c2 (\lambda (c: C).(csubt g (CHead e1 (Bind b1) v1) c)) H0 (CHead c3 (Bind b)
+u2) H3) in (let H6 \def (eq_ind_r C c2 (\lambda (c: C).(csubt g (CHead e1
+(Bind b1) v1) c)) H (CHead c3 (Bind b) u2) H3) in (eq_ind C (CHead c3 (Bind
+b) u2) (\lambda (c: C).(ex2_3 B C T (\lambda (b2: B).(\lambda (e2:
+C).(\lambda (v2: T).(eq C c (CHead e2 (Bind b2) v2))))) (\lambda (_:
+B).(\lambda (e2: C).(\lambda (_: T).(csubt g e1 e2)))))) (let H7 \def
+(f_equal C C (\lambda (e: C).(match e in C return (\lambda (_: C).C) with
+[(CSort _) \Rightarrow c0 | (CHead c _ _) \Rightarrow c])) (CHead c0 (Bind
+Void) u1) (CHead e1 (Bind b1) v1) H2) in ((let H8 \def (f_equal C B (\lambda
+(e: C).(match e in C return (\lambda (_: C).B) with [(CSort _) \Rightarrow
+Void | (CHead _ k _) \Rightarrow (match k in K return (\lambda (_: K).B) with
+[(Bind b0) \Rightarrow b0 | (Flat _) \Rightarrow Void])])) (CHead c0 (Bind
+Void) u1) (CHead e1 (Bind b1) v1) H2) in ((let H9 \def (f_equal C T (\lambda
+(e: C).(match e in C return (\lambda (_: C).T) with [(CSort _) \Rightarrow u1
+| (CHead _ _ t) \Rightarrow t])) (CHead c0 (Bind Void) u1) (CHead e1 (Bind
+b1) v1) H2) in (\lambda (H10: (eq B Void b1)).(\lambda (H11: (eq C c0
+e1)).(let H12 \def (eq_ind C c0 (\lambda (c: C).(csubt g c c3)) H1 e1 H11) in
+(let H13 \def (eq_ind_r B b1 (\lambda (b0: B).(csubt g (CHead e1 (Bind b0)
+v1) (CHead c3 (Bind b) u2))) H6 Void H10) in (let H14 \def (eq_ind_r B b1
+(\lambda (b0: B).(csubt g (CHead e1 (Bind b0) v1) (CHead c3 (Bind b) u2))) H5
+Void H10) in (ex2_3_intro B C T (\lambda (b2: B).(\lambda (e2: C).(\lambda
+(v2: T).(eq C (CHead c3 (Bind b) u2) (CHead e2 (Bind b2) v2))))) (\lambda (_:
+B).(\lambda (e2: C).(\lambda (_: T).(csubt g e1 e2)))) b c3 u2 (refl_equal C
+(CHead c3 (Bind b) u2)) H12))))))) H8)) H7)) c2 H3))))))))))))) (\lambda (H0:
+(csubt g (CHead e1 (Bind b1) v1) c2)).(\lambda (c0: C).(\lambda (c3:
+C).(\lambda (u: T).(\lambda (t: T).(\lambda (H2: (eq C (CHead c0 (Bind Abst)
+t) (CHead e1 (Bind b1) v1))).(\lambda (H3: (eq C (CHead c3 (Bind Abbr) u)
+c2)).(\lambda (H1: (csubt g c0 c3)).(\lambda (H4: (ty3 g c3 u t)).(let H5
+\def (eq_ind_r C c2 (\lambda (c: C).(csubt g (CHead e1 (Bind b1) v1) c)) H0
+(CHead c3 (Bind Abbr) u) H3) in (let H6 \def (eq_ind_r C c2 (\lambda (c:
+C).(csubt g (CHead e1 (Bind b1) v1) c)) H (CHead c3 (Bind Abbr) u) H3) in
+(eq_ind C (CHead c3 (Bind Abbr) u) (\lambda (c: C).(ex2_3 B C T (\lambda (b2:
+B).(\lambda (e2: C).(\lambda (v2: T).(eq C c (CHead e2 (Bind b2) v2)))))
+(\lambda (_: B).(\lambda (e2: C).(\lambda (_: T).(csubt g e1 e2)))))) (let H7
+\def (f_equal C C (\lambda (e: C).(match e in C return (\lambda (_: C).C)
+with [(CSort _) \Rightarrow c0 | (CHead c _ _) \Rightarrow c])) (CHead c0
+(Bind Abst) t) (CHead e1 (Bind b1) v1) H2) in ((let H8 \def (f_equal C B
+(\lambda (e: C).(match e in C return (\lambda (_: C).B) with [(CSort _)
+\Rightarrow Abst | (CHead _ k _) \Rightarrow (match k in K return (\lambda
+(_: K).B) with [(Bind b) \Rightarrow b | (Flat _) \Rightarrow Abst])]))
+(CHead c0 (Bind Abst) t) (CHead e1 (Bind b1) v1) H2) in ((let H9 \def
+(f_equal C T (\lambda (e: C).(match e in C return (\lambda (_: C).T) with
+[(CSort _) \Rightarrow t | (CHead _ _ t0) \Rightarrow t0])) (CHead c0 (Bind
+Abst) t) (CHead e1 (Bind b1) v1) H2) in (\lambda (H10: (eq B Abst
+b1)).(\lambda (H11: (eq C c0 e1)).(let H12 \def (eq_ind T t (\lambda (t0:
+T).(ty3 g c3 u t0)) H4 v1 H9) in (let H13 \def (eq_ind C c0 (\lambda (c:
+C).(csubt g c c3)) H1 e1 H11) in (let H14 \def (eq_ind_r B b1 (\lambda (b:
+B).(csubt g (CHead e1 (Bind b) v1) (CHead c3 (Bind Abbr) u))) H6 Abst H10) in
+(let H15 \def (eq_ind_r B b1 (\lambda (b: B).(csubt g (CHead e1 (Bind b) v1)
+(CHead c3 (Bind Abbr) u))) H5 Abst H10) in (ex2_3_intro B C T (\lambda (b2:
+B).(\lambda (e2: C).(\lambda (v2: T).(eq C (CHead c3 (Bind Abbr) u) (CHead e2
+(Bind b2) v2))))) (\lambda (_: B).(\lambda (e2: C).(\lambda (_: T).(csubt g
+e1 e2)))) Abbr c3 u (refl_equal C (CHead c3 (Bind Abbr) u)) H13)))))))) H8))
+H7)) c2 H3)))))))))))) H)))))).
include "pr0/props.ma".
-axiom pr0_gen_sort:
+theorem pr0_inv_coq:
+ \forall (t1: T).(\forall (t2: T).(\forall (P: ((T \to (T \to
+Prop)))).((((pr0 t1 t2) \to (\forall (t: T).((eq T t t1) \to ((eq T t t2) \to
+(P t1 t2)))))) \to ((((pr0 t1 t2) \to (\forall (u1: T).(\forall (u2:
+T).(\forall (t0: T).(\forall (t3: T).(\forall (k: K).((eq T (THead k u1 t0)
+t1) \to ((eq T (THead k u2 t3) t2) \to ((pr0 u1 u2) \to ((pr0 t0 t3) \to (P
+t1 t2)))))))))))) \to ((((pr0 t1 t2) \to (\forall (u: T).(\forall (v1:
+T).(\forall (v2: T).(\forall (t0: T).(\forall (t3: T).((eq T (THead (Flat
+Appl) v1 (THead (Bind Abst) u t0)) t1) \to ((eq T (THead (Bind Abbr) v2 t3)
+t2) \to ((pr0 v1 v2) \to ((pr0 t0 t3) \to (P t1 t2)))))))))))) \to ((((pr0 t1
+t2) \to (\forall (b: B).(\forall (v1: T).(\forall (v2: T).(\forall (u1:
+T).(\forall (u2: T).(\forall (t0: T).(\forall (t3: T).((eq T (THead (Flat
+Appl) v1 (THead (Bind b) u1 t0)) t1) \to ((eq T (THead (Bind b) u2 (THead
+(Flat Appl) (lift (S O) O v2) t3)) t2) \to ((not (eq B b Abst)) \to ((pr0 v1
+v2) \to ((pr0 u1 u2) \to ((pr0 t0 t3) \to (P t1 t2)))))))))))))))) \to
+((((pr0 t1 t2) \to (\forall (u1: T).(\forall (u2: T).(\forall (t0:
+T).(\forall (t3: T).(\forall (w: T).((eq T (THead (Bind Abbr) u1 t0) t1) \to
+((eq T (THead (Bind Abbr) u2 w) t2) \to ((pr0 u1 u2) \to ((pr0 t0 t3) \to
+((subst0 O u2 t3 w) \to (P t1 t2))))))))))))) \to ((((pr0 t1 t2) \to (\forall
+(b: B).(\forall (t0: T).(\forall (t3: T).(\forall (u: T).((eq T (THead (Bind
+b) u (lift (S O) O t0)) t1) \to ((eq T t3 t2) \to ((not (eq B b Abst)) \to
+((pr0 t0 t3) \to (P t1 t2))))))))))) \to ((((pr0 t1 t2) \to (\forall (t0:
+T).(\forall (t3: T).(\forall (u: T).((eq T (THead (Flat Cast) u t0) t1) \to
+((eq T t3 t2) \to ((pr0 t0 t3) \to (P t1 t2))))))))) \to ((pr0 t1 t2) \to (P
+t1 t2)))))))))))
+\def
+ \lambda (t1: T).(\lambda (t2: T).(\lambda (P: ((T \to (T \to
+Prop)))).(\lambda (H: (((pr0 t1 t2) \to (\forall (t: T).((eq T t t1) \to ((eq
+T t t2) \to (P t1 t2))))))).(\lambda (H0: (((pr0 t1 t2) \to (\forall (u1:
+T).(\forall (u2: T).(\forall (t0: T).(\forall (t3: T).(\forall (k: K).((eq T
+(THead k u1 t0) t1) \to ((eq T (THead k u2 t3) t2) \to ((pr0 u1 u2) \to ((pr0
+t0 t3) \to (P t1 t2))))))))))))).(\lambda (H1: (((pr0 t1 t2) \to (\forall (u:
+T).(\forall (v1: T).(\forall (v2: T).(\forall (t0: T).(\forall (t3: T).((eq T
+(THead (Flat Appl) v1 (THead (Bind Abst) u t0)) t1) \to ((eq T (THead (Bind
+Abbr) v2 t3) t2) \to ((pr0 v1 v2) \to ((pr0 t0 t3) \to (P t1
+t2))))))))))))).(\lambda (H2: (((pr0 t1 t2) \to (\forall (b: B).(\forall (v1:
+T).(\forall (v2: T).(\forall (u1: T).(\forall (u2: T).(\forall (t0:
+T).(\forall (t3: T).((eq T (THead (Flat Appl) v1 (THead (Bind b) u1 t0)) t1)
+\to ((eq T (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t3)) t2)
+\to ((not (eq B b Abst)) \to ((pr0 v1 v2) \to ((pr0 u1 u2) \to ((pr0 t0 t3)
+\to (P t1 t2))))))))))))))))).(\lambda (H3: (((pr0 t1 t2) \to (\forall (u1:
+T).(\forall (u2: T).(\forall (t0: T).(\forall (t3: T).(\forall (w: T).((eq T
+(THead (Bind Abbr) u1 t0) t1) \to ((eq T (THead (Bind Abbr) u2 w) t2) \to
+((pr0 u1 u2) \to ((pr0 t0 t3) \to ((subst0 O u2 t3 w) \to (P t1
+t2)))))))))))))).(\lambda (H4: (((pr0 t1 t2) \to (\forall (b: B).(\forall
+(t0: T).(\forall (t3: T).(\forall (u: T).((eq T (THead (Bind b) u (lift (S O)
+O t0)) t1) \to ((eq T t3 t2) \to ((not (eq B b Abst)) \to ((pr0 t0 t3) \to (P
+t1 t2)))))))))))).(\lambda (H5: (((pr0 t1 t2) \to (\forall (t0: T).(\forall
+(t3: T).(\forall (u: T).((eq T (THead (Flat Cast) u t0) t1) \to ((eq T t3 t2)
+\to ((pr0 t0 t3) \to (P t1 t2)))))))))).(\lambda (H6: (pr0 t1 t2)).(let H7
+\def (match H6 in pr0 return (\lambda (t: T).(\lambda (t0: T).(\lambda (_:
+(pr0 t t0)).((eq T t t1) \to ((eq T t0 t2) \to (P t1 t2)))))) with [(pr0_refl
+t) \Rightarrow (\lambda (H7: (eq T t t1)).(\lambda (H8: (eq T t t2)).(H H6 t
+H7 H8))) | (pr0_comp u1 u2 H7 t0 t3 H8 k) \Rightarrow (\lambda (H9: (eq T
+(THead k u1 t0) t1)).(\lambda (H10: (eq T (THead k u2 t3) t2)).(H0 H6 u1 u2
+t0 t3 k H9 H10 H7 H8))) | (pr0_beta u v1 v2 H7 t0 t3 H8) \Rightarrow (\lambda
+(H9: (eq T (THead (Flat Appl) v1 (THead (Bind Abst) u t0)) t1)).(\lambda
+(H10: (eq T (THead (Bind Abbr) v2 t3) t2)).(H1 H6 u v1 v2 t0 t3 H9 H10 H7
+H8))) | (pr0_upsilon b H7 v1 v2 H8 u1 u2 H9 t0 t3 H10) \Rightarrow (\lambda
+(H11: (eq T (THead (Flat Appl) v1 (THead (Bind b) u1 t0)) t1)).(\lambda (H12:
+(eq T (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t3)) t2)).(H2
+H6 b v1 v2 u1 u2 t0 t3 H11 H12 H7 H8 H9 H10))) | (pr0_delta u1 u2 H7 t0 t3 H8
+w H9) \Rightarrow (\lambda (H10: (eq T (THead (Bind Abbr) u1 t0)
+t1)).(\lambda (H11: (eq T (THead (Bind Abbr) u2 w) t2)).(H3 H6 u1 u2 t0 t3 w
+H10 H11 H7 H8 H9))) | (pr0_zeta b H7 t0 t3 H8 u) \Rightarrow (\lambda (H9:
+(eq T (THead (Bind b) u (lift (S O) O t0)) t1)).(\lambda (H10: (eq T t3
+t2)).(H4 H6 b t0 t3 u H9 H10 H7 H8))) | (pr0_epsilon t0 t3 H7 u) \Rightarrow
+(\lambda (H8: (eq T (THead (Flat Cast) u t0) t1)).(\lambda (H9: (eq T t3
+t2)).(H5 H6 t0 t3 u H8 H9 H7)))]) in (H7 (refl_equal T t1) (refl_equal T
+t2))))))))))))).
+
+theorem pr0_gen_sort:
\forall (x: T).(\forall (n: nat).((pr0 (TSort n) x) \to (eq T x (TSort n))))
-.
+\def
+ \lambda (x: T).(\lambda (n: nat).(\lambda (H: (pr0 (TSort n)
+x)).(pr0_inv_coq (TSort n) x (\lambda (t: T).(\lambda (t0: T).(eq T t0 t)))
+(\lambda (H0: (pr0 (TSort n) x)).(\lambda (t: T).(\lambda (H1: (eq T t (TSort
+n))).(\lambda (H2: (eq T t x)).(let H3 \def (eq_ind T t (\lambda (t0: T).(eq
+T t0 (TSort n))) H1 x H2) in (let H4 \def (eq_ind T x (\lambda (t0: T).(pr0
+(TSort n) t0)) H0 (TSort n) H3) in (let H5 \def (eq_ind T x (\lambda (t0:
+T).(pr0 (TSort n) t0)) H (TSort n) H3) in (eq_ind_r T (TSort n) (\lambda (t0:
+T).(eq T t0 (TSort n))) (refl_equal T (TSort n)) x H3)))))))) (\lambda (H0:
+(pr0 (TSort n) x)).(\lambda (u1: T).(\lambda (u2: T).(\lambda (t0:
+T).(\lambda (t3: T).(\lambda (k: K).(\lambda (H2: (eq T (THead k u1 t0)
+(TSort n))).(\lambda (H3: (eq T (THead k u2 t3) x)).(\lambda (_: (pr0 u1
+u2)).(\lambda (_: (pr0 t0 t3)).(let H5 \def (eq_ind_r T x (\lambda (t:
+T).(pr0 (TSort n) t)) H0 (THead k u2 t3) H3) in (let H6 \def (eq_ind_r T x
+(\lambda (t: T).(pr0 (TSort n) t)) H (THead k u2 t3) H3) in (eq_ind T (THead
+k u2 t3) (\lambda (t: T).(eq T t (TSort n))) (let H7 \def (eq_ind T (THead k
+u1 t0) (\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) with
+[(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead _ _ _)
+\Rightarrow True])) I (TSort n) H2) in (False_ind (eq T (THead k u2 t3)
+(TSort n)) H7)) x H3))))))))))))) (\lambda (H0: (pr0 (TSort n) x)).(\lambda
+(u: T).(\lambda (v1: T).(\lambda (v2: T).(\lambda (t0: T).(\lambda (t3:
+T).(\lambda (H2: (eq T (THead (Flat Appl) v1 (THead (Bind Abst) u t0)) (TSort
+n))).(\lambda (H3: (eq T (THead (Bind Abbr) v2 t3) x)).(\lambda (_: (pr0 v1
+v2)).(\lambda (_: (pr0 t0 t3)).(let H5 \def (eq_ind_r T x (\lambda (t:
+T).(pr0 (TSort n) t)) H0 (THead (Bind Abbr) v2 t3) H3) in (let H6 \def
+(eq_ind_r T x (\lambda (t: T).(pr0 (TSort n) t)) H (THead (Bind Abbr) v2 t3)
+H3) in (eq_ind T (THead (Bind Abbr) v2 t3) (\lambda (t: T).(eq T t (TSort
+n))) (let H7 \def (eq_ind T (THead (Flat Appl) v1 (THead (Bind Abst) u t0))
+(\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) with [(TSort _)
+\Rightarrow False | (TLRef _) \Rightarrow False | (THead _ _ _) \Rightarrow
+True])) I (TSort n) H2) in (False_ind (eq T (THead (Bind Abbr) v2 t3) (TSort
+n)) H7)) x H3))))))))))))) (\lambda (H0: (pr0 (TSort n) x)).(\lambda (b:
+B).(\lambda (v1: T).(\lambda (v2: T).(\lambda (u1: T).(\lambda (u2:
+T).(\lambda (t0: T).(\lambda (t3: T).(\lambda (H4: (eq T (THead (Flat Appl)
+v1 (THead (Bind b) u1 t0)) (TSort n))).(\lambda (H5: (eq T (THead (Bind b) u2
+(THead (Flat Appl) (lift (S O) O v2) t3)) x)).(\lambda (_: (not (eq B b
+Abst))).(\lambda (_: (pr0 v1 v2)).(\lambda (_: (pr0 u1 u2)).(\lambda (_: (pr0
+t0 t3)).(let H7 \def (eq_ind_r T x (\lambda (t: T).(pr0 (TSort n) t)) H0
+(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t3)) H5) in (let H8
+\def (eq_ind_r T x (\lambda (t: T).(pr0 (TSort n) t)) H (THead (Bind b) u2
+(THead (Flat Appl) (lift (S O) O v2) t3)) H5) in (eq_ind T (THead (Bind b) u2
+(THead (Flat Appl) (lift (S O) O v2) t3)) (\lambda (t: T).(eq T t (TSort n)))
+(let H9 \def (eq_ind T (THead (Flat Appl) v1 (THead (Bind b) u1 t0)) (\lambda
+(ee: T).(match ee in T return (\lambda (_: T).Prop) with [(TSort _)
+\Rightarrow False | (TLRef _) \Rightarrow False | (THead _ _ _) \Rightarrow
+True])) I (TSort n) H4) in (False_ind (eq T (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t3)) (TSort n)) H9)) x H5))))))))))))))))) (\lambda
+(H0: (pr0 (TSort n) x)).(\lambda (u1: T).(\lambda (u2: T).(\lambda (t0:
+T).(\lambda (t3: T).(\lambda (w: T).(\lambda (H3: (eq T (THead (Bind Abbr) u1
+t0) (TSort n))).(\lambda (H4: (eq T (THead (Bind Abbr) u2 w) x)).(\lambda (_:
+(pr0 u1 u2)).(\lambda (_: (pr0 t0 t3)).(\lambda (_: (subst0 O u2 t3 w)).(let
+H6 \def (eq_ind_r T x (\lambda (t: T).(pr0 (TSort n) t)) H0 (THead (Bind
+Abbr) u2 w) H4) in (let H7 \def (eq_ind_r T x (\lambda (t: T).(pr0 (TSort n)
+t)) H (THead (Bind Abbr) u2 w) H4) in (eq_ind T (THead (Bind Abbr) u2 w)
+(\lambda (t: T).(eq T t (TSort n))) (let H8 \def (eq_ind T (THead (Bind Abbr)
+u1 t0) (\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) with
+[(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead _ _ _)
+\Rightarrow True])) I (TSort n) H3) in (False_ind (eq T (THead (Bind Abbr) u2
+w) (TSort n)) H8)) x H4)))))))))))))) (\lambda (_: (pr0 (TSort n)
+x)).(\lambda (b: B).(\lambda (t0: T).(\lambda (t3: T).(\lambda (u:
+T).(\lambda (H2: (eq T (THead (Bind b) u (lift (S O) O t0)) (TSort
+n))).(\lambda (H3: (eq T t3 x)).(\lambda (_: (not (eq B b Abst))).(\lambda
+(H4: (pr0 t0 t3)).(let H5 \def (eq_ind T t3 (\lambda (t: T).(pr0 t0 t)) H4 x
+H3) in (let H6 \def (eq_ind T (THead (Bind b) u (lift (S O) O t0)) (\lambda
+(ee: T).(match ee in T return (\lambda (_: T).Prop) with [(TSort _)
+\Rightarrow False | (TLRef _) \Rightarrow False | (THead _ _ _) \Rightarrow
+True])) I (TSort n) H2) in (False_ind (eq T x (TSort n)) H6))))))))))))
+(\lambda (_: (pr0 (TSort n) x)).(\lambda (t0: T).(\lambda (t3: T).(\lambda
+(u: T).(\lambda (H1: (eq T (THead (Flat Cast) u t0) (TSort n))).(\lambda (H2:
+(eq T t3 x)).(\lambda (H3: (pr0 t0 t3)).(let H4 \def (eq_ind T t3 (\lambda
+(t: T).(pr0 t0 t)) H3 x H2) in (let H5 \def (eq_ind T (THead (Flat Cast) u
+t0) (\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) with [(TSort
+_) \Rightarrow False | (TLRef _) \Rightarrow False | (THead _ _ _)
+\Rightarrow True])) I (TSort n) H1) in (False_ind (eq T x (TSort n))
+H5)))))))))) H))).
-axiom pr0_gen_lref:
+theorem pr0_gen_lref:
\forall (x: T).(\forall (n: nat).((pr0 (TLRef n) x) \to (eq T x (TLRef n))))
-.
+\def
+ \lambda (x: T).(\lambda (n: nat).(\lambda (H: (pr0 (TLRef n)
+x)).(pr0_inv_coq (TLRef n) x (\lambda (t: T).(\lambda (t0: T).(eq T t0 t)))
+(\lambda (H0: (pr0 (TLRef n) x)).(\lambda (t: T).(\lambda (H1: (eq T t (TLRef
+n))).(\lambda (H2: (eq T t x)).(let H3 \def (eq_ind T t (\lambda (t0: T).(eq
+T t0 (TLRef n))) H1 x H2) in (let H4 \def (eq_ind T x (\lambda (t0: T).(pr0
+(TLRef n) t0)) H0 (TLRef n) H3) in (let H5 \def (eq_ind T x (\lambda (t0:
+T).(pr0 (TLRef n) t0)) H (TLRef n) H3) in (eq_ind_r T (TLRef n) (\lambda (t0:
+T).(eq T t0 (TLRef n))) (refl_equal T (TLRef n)) x H3)))))))) (\lambda (H0:
+(pr0 (TLRef n) x)).(\lambda (u1: T).(\lambda (u2: T).(\lambda (t0:
+T).(\lambda (t3: T).(\lambda (k: K).(\lambda (H2: (eq T (THead k u1 t0)
+(TLRef n))).(\lambda (H3: (eq T (THead k u2 t3) x)).(\lambda (_: (pr0 u1
+u2)).(\lambda (_: (pr0 t0 t3)).(let H5 \def (eq_ind_r T x (\lambda (t:
+T).(pr0 (TLRef n) t)) H0 (THead k u2 t3) H3) in (let H6 \def (eq_ind_r T x
+(\lambda (t: T).(pr0 (TLRef n) t)) H (THead k u2 t3) H3) in (eq_ind T (THead
+k u2 t3) (\lambda (t: T).(eq T t (TLRef n))) (let H7 \def (eq_ind T (THead k
+u1 t0) (\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) with
+[(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead _ _ _)
+\Rightarrow True])) I (TLRef n) H2) in (False_ind (eq T (THead k u2 t3)
+(TLRef n)) H7)) x H3))))))))))))) (\lambda (H0: (pr0 (TLRef n) x)).(\lambda
+(u: T).(\lambda (v1: T).(\lambda (v2: T).(\lambda (t0: T).(\lambda (t3:
+T).(\lambda (H2: (eq T (THead (Flat Appl) v1 (THead (Bind Abst) u t0)) (TLRef
+n))).(\lambda (H3: (eq T (THead (Bind Abbr) v2 t3) x)).(\lambda (_: (pr0 v1
+v2)).(\lambda (_: (pr0 t0 t3)).(let H5 \def (eq_ind_r T x (\lambda (t:
+T).(pr0 (TLRef n) t)) H0 (THead (Bind Abbr) v2 t3) H3) in (let H6 \def
+(eq_ind_r T x (\lambda (t: T).(pr0 (TLRef n) t)) H (THead (Bind Abbr) v2 t3)
+H3) in (eq_ind T (THead (Bind Abbr) v2 t3) (\lambda (t: T).(eq T t (TLRef
+n))) (let H7 \def (eq_ind T (THead (Flat Appl) v1 (THead (Bind Abst) u t0))
+(\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) with [(TSort _)
+\Rightarrow False | (TLRef _) \Rightarrow False | (THead _ _ _) \Rightarrow
+True])) I (TLRef n) H2) in (False_ind (eq T (THead (Bind Abbr) v2 t3) (TLRef
+n)) H7)) x H3))))))))))))) (\lambda (H0: (pr0 (TLRef n) x)).(\lambda (b:
+B).(\lambda (v1: T).(\lambda (v2: T).(\lambda (u1: T).(\lambda (u2:
+T).(\lambda (t0: T).(\lambda (t3: T).(\lambda (H4: (eq T (THead (Flat Appl)
+v1 (THead (Bind b) u1 t0)) (TLRef n))).(\lambda (H5: (eq T (THead (Bind b) u2
+(THead (Flat Appl) (lift (S O) O v2) t3)) x)).(\lambda (_: (not (eq B b
+Abst))).(\lambda (_: (pr0 v1 v2)).(\lambda (_: (pr0 u1 u2)).(\lambda (_: (pr0
+t0 t3)).(let H7 \def (eq_ind_r T x (\lambda (t: T).(pr0 (TLRef n) t)) H0
+(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t3)) H5) in (let H8
+\def (eq_ind_r T x (\lambda (t: T).(pr0 (TLRef n) t)) H (THead (Bind b) u2
+(THead (Flat Appl) (lift (S O) O v2) t3)) H5) in (eq_ind T (THead (Bind b) u2
+(THead (Flat Appl) (lift (S O) O v2) t3)) (\lambda (t: T).(eq T t (TLRef n)))
+(let H9 \def (eq_ind T (THead (Flat Appl) v1 (THead (Bind b) u1 t0)) (\lambda
+(ee: T).(match ee in T return (\lambda (_: T).Prop) with [(TSort _)
+\Rightarrow False | (TLRef _) \Rightarrow False | (THead _ _ _) \Rightarrow
+True])) I (TLRef n) H4) in (False_ind (eq T (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t3)) (TLRef n)) H9)) x H5))))))))))))))))) (\lambda
+(H0: (pr0 (TLRef n) x)).(\lambda (u1: T).(\lambda (u2: T).(\lambda (t0:
+T).(\lambda (t3: T).(\lambda (w: T).(\lambda (H3: (eq T (THead (Bind Abbr) u1
+t0) (TLRef n))).(\lambda (H4: (eq T (THead (Bind Abbr) u2 w) x)).(\lambda (_:
+(pr0 u1 u2)).(\lambda (_: (pr0 t0 t3)).(\lambda (_: (subst0 O u2 t3 w)).(let
+H6 \def (eq_ind_r T x (\lambda (t: T).(pr0 (TLRef n) t)) H0 (THead (Bind
+Abbr) u2 w) H4) in (let H7 \def (eq_ind_r T x (\lambda (t: T).(pr0 (TLRef n)
+t)) H (THead (Bind Abbr) u2 w) H4) in (eq_ind T (THead (Bind Abbr) u2 w)
+(\lambda (t: T).(eq T t (TLRef n))) (let H8 \def (eq_ind T (THead (Bind Abbr)
+u1 t0) (\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) with
+[(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead _ _ _)
+\Rightarrow True])) I (TLRef n) H3) in (False_ind (eq T (THead (Bind Abbr) u2
+w) (TLRef n)) H8)) x H4)))))))))))))) (\lambda (_: (pr0 (TLRef n)
+x)).(\lambda (b: B).(\lambda (t0: T).(\lambda (t3: T).(\lambda (u:
+T).(\lambda (H2: (eq T (THead (Bind b) u (lift (S O) O t0)) (TLRef
+n))).(\lambda (H3: (eq T t3 x)).(\lambda (_: (not (eq B b Abst))).(\lambda
+(H4: (pr0 t0 t3)).(let H5 \def (eq_ind T t3 (\lambda (t: T).(pr0 t0 t)) H4 x
+H3) in (let H6 \def (eq_ind T (THead (Bind b) u (lift (S O) O t0)) (\lambda
+(ee: T).(match ee in T return (\lambda (_: T).Prop) with [(TSort _)
+\Rightarrow False | (TLRef _) \Rightarrow False | (THead _ _ _) \Rightarrow
+True])) I (TLRef n) H2) in (False_ind (eq T x (TLRef n)) H6))))))))))))
+(\lambda (_: (pr0 (TLRef n) x)).(\lambda (t0: T).(\lambda (t3: T).(\lambda
+(u: T).(\lambda (H1: (eq T (THead (Flat Cast) u t0) (TLRef n))).(\lambda (H2:
+(eq T t3 x)).(\lambda (H3: (pr0 t0 t3)).(let H4 \def (eq_ind T t3 (\lambda
+(t: T).(pr0 t0 t)) H3 x H2) in (let H5 \def (eq_ind T (THead (Flat Cast) u
+t0) (\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) with [(TSort
+_) \Rightarrow False | (TLRef _) \Rightarrow False | (THead _ _ _)
+\Rightarrow True])) I (TLRef n) H1) in (False_ind (eq T x (TLRef n))
+H5)))))))))) H))).
-axiom pr0_gen_abst:
+theorem pr0_gen_abst:
\forall (u1: T).(\forall (t1: T).(\forall (x: T).((pr0 (THead (Bind Abst) u1
t1) x) \to (ex3_2 T T (\lambda (u2: T).(\lambda (t2: T).(eq T x (THead (Bind
Abst) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_:
T).(\lambda (t2: T).(pr0 t1 t2)))))))
-.
+\def
+ \lambda (u1: T).(\lambda (t1: T).(\lambda (x: T).(\lambda (H: (pr0 (THead
+(Bind Abst) u1 t1) x)).(pr0_inv_coq (THead (Bind Abst) u1 t1) x (\lambda (_:
+T).(\lambda (t0: T).(ex3_2 T T (\lambda (u2: T).(\lambda (t2: T).(eq T t0
+(THead (Bind Abst) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2)))
+(\lambda (_: T).(\lambda (t2: T).(pr0 t1 t2)))))) (\lambda (H0: (pr0 (THead
+(Bind Abst) u1 t1) x)).(\lambda (t: T).(\lambda (H1: (eq T t (THead (Bind
+Abst) u1 t1))).(\lambda (H2: (eq T t x)).(let H3 \def (eq_ind T t (\lambda
+(t0: T).(eq T t0 (THead (Bind Abst) u1 t1))) H1 x H2) in (let H4 \def (eq_ind
+T x (\lambda (t0: T).(pr0 (THead (Bind Abst) u1 t1) t0)) H0 (THead (Bind
+Abst) u1 t1) H3) in (let H5 \def (eq_ind T x (\lambda (t0: T).(pr0 (THead
+(Bind Abst) u1 t1) t0)) H (THead (Bind Abst) u1 t1) H3) in (eq_ind_r T (THead
+(Bind Abst) u1 t1) (\lambda (t0: T).(ex3_2 T T (\lambda (u2: T).(\lambda (t2:
+T).(eq T t0 (THead (Bind Abst) u2 t2)))) (\lambda (u2: T).(\lambda (_:
+T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t2: T).(pr0 t1 t2)))))
+(ex3_2_intro T T (\lambda (u2: T).(\lambda (t2: T).(eq T (THead (Bind Abst)
+u1 t1) (THead (Bind Abst) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1
+u2))) (\lambda (_: T).(\lambda (t2: T).(pr0 t1 t2))) u1 t1 (refl_equal T
+(THead (Bind Abst) u1 t1)) (pr0_refl u1) (pr0_refl t1)) x H3)))))))) (\lambda
+(H0: (pr0 (THead (Bind Abst) u1 t1) x)).(\lambda (u0: T).(\lambda (u2:
+T).(\lambda (t0: T).(\lambda (t3: T).(\lambda (k: K).(\lambda (H2: (eq T
+(THead k u0 t0) (THead (Bind Abst) u1 t1))).(\lambda (H3: (eq T (THead k u2
+t3) x)).(\lambda (H1: (pr0 u0 u2)).(\lambda (H4: (pr0 t0 t3)).(let H5 \def
+(eq_ind_r T x (\lambda (t: T).(pr0 (THead (Bind Abst) u1 t1) t)) H0 (THead k
+u2 t3) H3) in (let H6 \def (eq_ind_r T x (\lambda (t: T).(pr0 (THead (Bind
+Abst) u1 t1) t)) H (THead k u2 t3) H3) in (eq_ind T (THead k u2 t3) (\lambda
+(t: T).(ex3_2 T T (\lambda (u3: T).(\lambda (t2: T).(eq T t (THead (Bind
+Abst) u3 t2)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_:
+T).(\lambda (t2: T).(pr0 t1 t2))))) (let H7 \def (f_equal T K (\lambda (e:
+T).(match e in T return (\lambda (_: T).K) with [(TSort _) \Rightarrow k |
+(TLRef _) \Rightarrow k | (THead k0 _ _) \Rightarrow k0])) (THead k u0 t0)
+(THead (Bind Abst) u1 t1) H2) in ((let H8 \def (f_equal T T (\lambda (e:
+T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow u0 |
+(TLRef _) \Rightarrow u0 | (THead _ t _) \Rightarrow t])) (THead k u0 t0)
+(THead (Bind Abst) u1 t1) H2) in ((let H9 \def (f_equal T T (\lambda (e:
+T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow t0 |
+(TLRef _) \Rightarrow t0 | (THead _ _ t) \Rightarrow t])) (THead k u0 t0)
+(THead (Bind Abst) u1 t1) H2) in (\lambda (H10: (eq T u0 u1)).(\lambda (H11:
+(eq K k (Bind Abst))).(let H12 \def (eq_ind K k (\lambda (k0: K).(pr0 (THead
+(Bind Abst) u1 t1) (THead k0 u2 t3))) H6 (Bind Abst) H11) in (let H13 \def
+(eq_ind K k (\lambda (k0: K).(pr0 (THead (Bind Abst) u1 t1) (THead k0 u2
+t3))) H5 (Bind Abst) H11) in (eq_ind_r K (Bind Abst) (\lambda (k0: K).(ex3_2
+T T (\lambda (u3: T).(\lambda (t2: T).(eq T (THead k0 u2 t3) (THead (Bind
+Abst) u3 t2)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_:
+T).(\lambda (t2: T).(pr0 t1 t2))))) (let H14 \def (eq_ind T t0 (\lambda (t:
+T).(pr0 t t3)) H4 t1 H9) in (let H15 \def (eq_ind T u0 (\lambda (t: T).(pr0 t
+u2)) H1 u1 H10) in (ex3_2_intro T T (\lambda (u3: T).(\lambda (t2: T).(eq T
+(THead (Bind Abst) u2 t3) (THead (Bind Abst) u3 t2)))) (\lambda (u3:
+T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t2: T).(pr0 t1
+t2))) u2 t3 (refl_equal T (THead (Bind Abst) u2 t3)) H15 H14))) k H11))))))
+H8)) H7)) x H3))))))))))))) (\lambda (H0: (pr0 (THead (Bind Abst) u1 t1)
+x)).(\lambda (u: T).(\lambda (v1: T).(\lambda (v2: T).(\lambda (t0:
+T).(\lambda (t3: T).(\lambda (H2: (eq T (THead (Flat Appl) v1 (THead (Bind
+Abst) u t0)) (THead (Bind Abst) u1 t1))).(\lambda (H3: (eq T (THead (Bind
+Abbr) v2 t3) x)).(\lambda (_: (pr0 v1 v2)).(\lambda (_: (pr0 t0 t3)).(let H5
+\def (eq_ind_r T x (\lambda (t: T).(pr0 (THead (Bind Abst) u1 t1) t)) H0
+(THead (Bind Abbr) v2 t3) H3) in (let H6 \def (eq_ind_r T x (\lambda (t:
+T).(pr0 (THead (Bind Abst) u1 t1) t)) H (THead (Bind Abbr) v2 t3) H3) in
+(eq_ind T (THead (Bind Abbr) v2 t3) (\lambda (t: T).(ex3_2 T T (\lambda (u2:
+T).(\lambda (t2: T).(eq T t (THead (Bind Abst) u2 t2)))) (\lambda (u2:
+T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t2: T).(pr0 t1
+t2))))) (let H7 \def (eq_ind T (THead (Flat Appl) v1 (THead (Bind Abst) u
+t0)) (\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) with
+[(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _)
+\Rightarrow (match k in K return (\lambda (_: K).Prop) with [(Bind _)
+\Rightarrow False | (Flat _) \Rightarrow True])])) I (THead (Bind Abst) u1
+t1) H2) in (False_ind (ex3_2 T T (\lambda (u2: T).(\lambda (t2: T).(eq T
+(THead (Bind Abbr) v2 t3) (THead (Bind Abst) u2 t2)))) (\lambda (u2:
+T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t2: T).(pr0 t1
+t2)))) H7)) x H3))))))))))))) (\lambda (H0: (pr0 (THead (Bind Abst) u1 t1)
+x)).(\lambda (b: B).(\lambda (v1: T).(\lambda (v2: T).(\lambda (u0:
+T).(\lambda (u2: T).(\lambda (t0: T).(\lambda (t3: T).(\lambda (H4: (eq T
+(THead (Flat Appl) v1 (THead (Bind b) u0 t0)) (THead (Bind Abst) u1
+t1))).(\lambda (H5: (eq T (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O
+v2) t3)) x)).(\lambda (_: (not (eq B b Abst))).(\lambda (_: (pr0 v1
+v2)).(\lambda (_: (pr0 u0 u2)).(\lambda (_: (pr0 t0 t3)).(let H7 \def
+(eq_ind_r T x (\lambda (t: T).(pr0 (THead (Bind Abst) u1 t1) t)) H0 (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t3)) H5) in (let H8 \def
+(eq_ind_r T x (\lambda (t: T).(pr0 (THead (Bind Abst) u1 t1) t)) H (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t3)) H5) in (eq_ind T (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t3)) (\lambda (t: T).(ex3_2
+T T (\lambda (u3: T).(\lambda (t2: T).(eq T t (THead (Bind Abst) u3 t2))))
+(\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t2:
+T).(pr0 t1 t2))))) (let H9 \def (eq_ind T (THead (Flat Appl) v1 (THead (Bind
+b) u0 t0)) (\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) with
+[(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _)
+\Rightarrow (match k in K return (\lambda (_: K).Prop) with [(Bind _)
+\Rightarrow False | (Flat _) \Rightarrow True])])) I (THead (Bind Abst) u1
+t1) H4) in (False_ind (ex3_2 T T (\lambda (u3: T).(\lambda (t2: T).(eq T
+(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t3)) (THead (Bind
+Abst) u3 t2)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_:
+T).(\lambda (t2: T).(pr0 t1 t2)))) H9)) x H5))))))))))))))))) (\lambda (H0:
+(pr0 (THead (Bind Abst) u1 t1) x)).(\lambda (u0: T).(\lambda (u2: T).(\lambda
+(t0: T).(\lambda (t3: T).(\lambda (w: T).(\lambda (H3: (eq T (THead (Bind
+Abbr) u0 t0) (THead (Bind Abst) u1 t1))).(\lambda (H4: (eq T (THead (Bind
+Abbr) u2 w) x)).(\lambda (_: (pr0 u0 u2)).(\lambda (_: (pr0 t0 t3)).(\lambda
+(_: (subst0 O u2 t3 w)).(let H6 \def (eq_ind_r T x (\lambda (t: T).(pr0
+(THead (Bind Abst) u1 t1) t)) H0 (THead (Bind Abbr) u2 w) H4) in (let H7 \def
+(eq_ind_r T x (\lambda (t: T).(pr0 (THead (Bind Abst) u1 t1) t)) H (THead
+(Bind Abbr) u2 w) H4) in (eq_ind T (THead (Bind Abbr) u2 w) (\lambda (t:
+T).(ex3_2 T T (\lambda (u3: T).(\lambda (t2: T).(eq T t (THead (Bind Abst) u3
+t2)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_:
+T).(\lambda (t2: T).(pr0 t1 t2))))) (let H8 \def (eq_ind T (THead (Bind Abbr)
+u0 t0) (\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) with
+[(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _)
+\Rightarrow (match k in K return (\lambda (_: K).Prop) with [(Bind b)
+\Rightarrow (match b in B return (\lambda (_: B).Prop) with [Abbr \Rightarrow
+True | Abst \Rightarrow False | Void \Rightarrow False]) | (Flat _)
+\Rightarrow False])])) I (THead (Bind Abst) u1 t1) H3) in (False_ind (ex3_2 T
+T (\lambda (u3: T).(\lambda (t2: T).(eq T (THead (Bind Abbr) u2 w) (THead
+(Bind Abst) u3 t2)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda
+(_: T).(\lambda (t2: T).(pr0 t1 t2)))) H8)) x H4)))))))))))))) (\lambda (H0:
+(pr0 (THead (Bind Abst) u1 t1) x)).(\lambda (b: B).(\lambda (t0: T).(\lambda
+(t3: T).(\lambda (u: T).(\lambda (H2: (eq T (THead (Bind b) u (lift (S O) O
+t0)) (THead (Bind Abst) u1 t1))).(\lambda (H3: (eq T t3 x)).(\lambda (H1:
+(not (eq B b Abst))).(\lambda (H4: (pr0 t0 t3)).(let H5 \def (eq_ind T t3
+(\lambda (t: T).(pr0 t0 t)) H4 x H3) in (let H6 \def (f_equal T B (\lambda
+(e: T).(match e in T return (\lambda (_: T).B) with [(TSort _) \Rightarrow b
+| (TLRef _) \Rightarrow b | (THead k _ _) \Rightarrow (match k in K return
+(\lambda (_: K).B) with [(Bind b0) \Rightarrow b0 | (Flat _) \Rightarrow
+b])])) (THead (Bind b) u (lift (S O) O t0)) (THead (Bind Abst) u1 t1) H2) in
+((let H7 \def (f_equal T T (\lambda (e: T).(match e in T return (\lambda (_:
+T).T) with [(TSort _) \Rightarrow u | (TLRef _) \Rightarrow u | (THead _ t _)
+\Rightarrow t])) (THead (Bind b) u (lift (S O) O t0)) (THead (Bind Abst) u1
+t1) H2) in ((let H8 \def (f_equal T T (\lambda (e: T).(match e in T return
+(\lambda (_: T).T) with [(TSort _) \Rightarrow ((let rec lref_map (f: ((nat
+\to nat))) (d: nat) (t: T) on t: T \def (match t with [(TSort n) \Rightarrow
+(TSort n) | (TLRef i) \Rightarrow (TLRef (match (blt i d) with [true
+\Rightarrow i | false \Rightarrow (f i)])) | (THead k u0 t2) \Rightarrow
+(THead k (lref_map f d u0) (lref_map f (s k d) t2))]) in lref_map) (\lambda
+(x0: nat).(plus x0 (S O))) O t0) | (TLRef _) \Rightarrow ((let rec lref_map
+(f: ((nat \to nat))) (d: nat) (t: T) on t: T \def (match t with [(TSort n)
+\Rightarrow (TSort n) | (TLRef i) \Rightarrow (TLRef (match (blt i d) with
+[true \Rightarrow i | false \Rightarrow (f i)])) | (THead k u0 t2)
+\Rightarrow (THead k (lref_map f d u0) (lref_map f (s k d) t2))]) in
+lref_map) (\lambda (x0: nat).(plus x0 (S O))) O t0) | (THead _ _ t)
+\Rightarrow t])) (THead (Bind b) u (lift (S O) O t0)) (THead (Bind Abst) u1
+t1) H2) in (\lambda (_: (eq T u u1)).(\lambda (H10: (eq B b Abst)).(let H11
+\def (eq_ind B b (\lambda (b0: B).(not (eq B b0 Abst))) H1 Abst H10) in (let
+H12 \def (eq_ind_r T t1 (\lambda (t: T).(pr0 (THead (Bind Abst) u1 t) x)) H0
+(lift (S O) O t0) H8) in (let H13 \def (eq_ind_r T t1 (\lambda (t: T).(pr0
+(THead (Bind Abst) u1 t) x)) H (lift (S O) O t0) H8) in (eq_ind T (lift (S O)
+O t0) (\lambda (t: T).(ex3_2 T T (\lambda (u2: T).(\lambda (t2: T).(eq T x
+(THead (Bind Abst) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2)))
+(\lambda (_: T).(\lambda (t2: T).(pr0 t t2))))) (let H14 \def (match (H11
+(refl_equal B Abst)) in False return (\lambda (_: False).(ex3_2 T T (\lambda
+(u2: T).(\lambda (t2: T).(eq T x (THead (Bind Abst) u2 t2)))) (\lambda (u2:
+T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t2: T).(pr0 (lift
+(S O) O t0) t2))))) with []) in H14) t1 H8))))))) H7)) H6))))))))))))
+(\lambda (_: (pr0 (THead (Bind Abst) u1 t1) x)).(\lambda (t0: T).(\lambda
+(t3: T).(\lambda (u: T).(\lambda (H1: (eq T (THead (Flat Cast) u t0) (THead
+(Bind Abst) u1 t1))).(\lambda (H2: (eq T t3 x)).(\lambda (H3: (pr0 t0
+t3)).(let H4 \def (eq_ind T t3 (\lambda (t: T).(pr0 t0 t)) H3 x H2) in (let
+H5 \def (eq_ind T (THead (Flat Cast) u t0) (\lambda (ee: T).(match ee in T
+return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _)
+\Rightarrow False | (THead k _ _) \Rightarrow (match k in K return (\lambda
+(_: K).Prop) with [(Bind _) \Rightarrow False | (Flat _) \Rightarrow
+True])])) I (THead (Bind Abst) u1 t1) H1) in (False_ind (ex3_2 T T (\lambda
+(u2: T).(\lambda (t2: T).(eq T x (THead (Bind Abst) u2 t2)))) (\lambda (u2:
+T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t2: T).(pr0 t1
+t2)))) H5)))))))))) H)))).
-axiom pr0_gen_appl:
+theorem pr0_gen_appl:
\forall (u1: T).(\forall (t1: T).(\forall (x: T).((pr0 (THead (Flat Appl) u1
t1) x) \to (or3 (ex3_2 T T (\lambda (u2: T).(\lambda (t2: T).(eq T x (THead
(Flat Appl) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda
T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1 v2))))))) (\lambda (_:
B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
(t2: T).(pr0 z1 t2))))))))))))
-.
+\def
+ \lambda (u1: T).(\lambda (t1: T).(\lambda (x: T).(\lambda (H: (pr0 (THead
+(Flat Appl) u1 t1) x)).(pr0_inv_coq (THead (Flat Appl) u1 t1) x (\lambda (_:
+T).(\lambda (t0: T).(or3 (ex3_2 T T (\lambda (u2: T).(\lambda (t2: T).(eq T
+t0 (THead (Flat Appl) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1
+u2))) (\lambda (_: T).(\lambda (t2: T).(pr0 t1 t2)))) (ex4_4 T T T T (\lambda
+(y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead
+(Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2:
+T).(\lambda (t2: T).(eq T t0 (THead (Bind Abbr) u2 t2)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))))) (\lambda
+(_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t2: T).(pr0 z1 t2))))))
+(ex6_6 B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b:
+B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(eq T t1 (THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (v2: T).(\lambda (t2: T).(eq T
+t0 (THead (Bind b) v2 (THead (Flat Appl) (lift (S O) O u2) t2)))))))))
+(\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_:
+T).(\lambda (_: T).(pr0 u1 u2))))))) (\lambda (_: B).(\lambda (y1:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1
+v2))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (t2: T).(pr0 z1 t2))))))))))) (\lambda (H0: (pr0
+(THead (Flat Appl) u1 t1) x)).(\lambda (t: T).(\lambda (H1: (eq T t (THead
+(Flat Appl) u1 t1))).(\lambda (H2: (eq T t x)).(let H3 \def (eq_ind T t
+(\lambda (t0: T).(eq T t0 (THead (Flat Appl) u1 t1))) H1 x H2) in (let H4
+\def (eq_ind T x (\lambda (t0: T).(pr0 (THead (Flat Appl) u1 t1) t0)) H0
+(THead (Flat Appl) u1 t1) H3) in (let H5 \def (eq_ind T x (\lambda (t0:
+T).(pr0 (THead (Flat Appl) u1 t1) t0)) H (THead (Flat Appl) u1 t1) H3) in
+(eq_ind_r T (THead (Flat Appl) u1 t1) (\lambda (t0: T).(or3 (ex3_2 T T
+(\lambda (u2: T).(\lambda (t2: T).(eq T t0 (THead (Flat Appl) u2 t2))))
+(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t2:
+T).(pr0 t1 t2)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda
+(_: T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1 z1)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t2: T).(eq T t0 (THead (Bind
+Abbr) u2 t2)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda
+(_: T).(pr0 u1 u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (t2: T).(pr0 z1 t2)))))) (ex6_6 B T T T T T (\lambda (b:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind
+b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(u2: T).(\lambda (v2: T).(\lambda (t2: T).(eq T t0 (THead (Bind b) v2 (THead
+(Flat Appl) (lift (S O) O u2) t2))))))))) (\lambda (_: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(\lambda (_: T).(pr0 u1
+u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1 v2))))))) (\lambda (_:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(t2: T).(pr0 z1 t2)))))))))) (or3_intro0 (ex3_2 T T (\lambda (u2: T).(\lambda
+(t2: T).(eq T (THead (Flat Appl) u1 t1) (THead (Flat Appl) u2 t2)))) (\lambda
+(u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t2: T).(pr0
+t1 t2)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1 z1)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t2: T).(eq T (THead (Flat Appl)
+u1 t1) (THead (Bind Abbr) u2 t2)))))) (\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))))) (\lambda (_: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (t2: T).(pr0 z1 t2)))))) (ex6_6 B T T T T T
+(\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t1
+(THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (v2: T).(\lambda (t2: T).(eq T (THead (Flat
+Appl) u1 t1) (THead (Bind b) v2 (THead (Flat Appl) (lift (S O) O u2)
+t2))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (u2:
+T).(\lambda (_: T).(\lambda (_: T).(pr0 u1 u2))))))) (\lambda (_: B).(\lambda
+(y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (v2: T).(\lambda (_: T).(pr0
+y1 v2))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (t2: T).(pr0 z1 t2)))))))) (ex3_2_intro T T
+(\lambda (u2: T).(\lambda (t2: T).(eq T (THead (Flat Appl) u1 t1) (THead
+(Flat Appl) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda
+(_: T).(\lambda (t2: T).(pr0 t1 t2))) u1 t1 (refl_equal T (THead (Flat Appl)
+u1 t1)) (pr0_refl u1) (pr0_refl t1))) x H3)))))))) (\lambda (H0: (pr0 (THead
+(Flat Appl) u1 t1) x)).(\lambda (u0: T).(\lambda (u2: T).(\lambda (t0:
+T).(\lambda (t3: T).(\lambda (k: K).(\lambda (H2: (eq T (THead k u0 t0)
+(THead (Flat Appl) u1 t1))).(\lambda (H3: (eq T (THead k u2 t3) x)).(\lambda
+(H1: (pr0 u0 u2)).(\lambda (H4: (pr0 t0 t3)).(let H5 \def (eq_ind_r T x
+(\lambda (t: T).(pr0 (THead (Flat Appl) u1 t1) t)) H0 (THead k u2 t3) H3) in
+(let H6 \def (eq_ind_r T x (\lambda (t: T).(pr0 (THead (Flat Appl) u1 t1) t))
+H (THead k u2 t3) H3) in (eq_ind T (THead k u2 t3) (\lambda (t: T).(or3
+(ex3_2 T T (\lambda (u3: T).(\lambda (t2: T).(eq T t (THead (Flat Appl) u3
+t2)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_:
+T).(\lambda (t2: T).(pr0 t1 t2)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1
+z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda (t2:
+T).(eq T t (THead (Bind Abbr) u3 t2)))))) (\lambda (_: T).(\lambda (_:
+T).(\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))))) (\lambda (_: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (t2: T).(pr0 z1 t2)))))) (ex6_6 B T T T T T
+(\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t1
+(THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (u3: T).(\lambda (v2: T).(\lambda (t2: T).(eq T t (THead (Bind b)
+v2 (THead (Flat Appl) (lift (S O) O u3) t2))))))))) (\lambda (_: B).(\lambda
+(_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda (_: T).(\lambda (_: T).(pr0
+u1 u3))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1 v2))))))) (\lambda (_:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(t2: T).(pr0 z1 t2)))))))))) (let H7 \def (f_equal T K (\lambda (e: T).(match
+e in T return (\lambda (_: T).K) with [(TSort _) \Rightarrow k | (TLRef _)
+\Rightarrow k | (THead k0 _ _) \Rightarrow k0])) (THead k u0 t0) (THead (Flat
+Appl) u1 t1) H2) in ((let H8 \def (f_equal T T (\lambda (e: T).(match e in T
+return (\lambda (_: T).T) with [(TSort _) \Rightarrow u0 | (TLRef _)
+\Rightarrow u0 | (THead _ t _) \Rightarrow t])) (THead k u0 t0) (THead (Flat
+Appl) u1 t1) H2) in ((let H9 \def (f_equal T T (\lambda (e: T).(match e in T
+return (\lambda (_: T).T) with [(TSort _) \Rightarrow t0 | (TLRef _)
+\Rightarrow t0 | (THead _ _ t) \Rightarrow t])) (THead k u0 t0) (THead (Flat
+Appl) u1 t1) H2) in (\lambda (H10: (eq T u0 u1)).(\lambda (H11: (eq K k (Flat
+Appl))).(let H12 \def (eq_ind K k (\lambda (k0: K).(pr0 (THead (Flat Appl) u1
+t1) (THead k0 u2 t3))) H6 (Flat Appl) H11) in (let H13 \def (eq_ind K k
+(\lambda (k0: K).(pr0 (THead (Flat Appl) u1 t1) (THead k0 u2 t3))) H5 (Flat
+Appl) H11) in (eq_ind_r K (Flat Appl) (\lambda (k0: K).(or3 (ex3_2 T T
+(\lambda (u3: T).(\lambda (t2: T).(eq T (THead k0 u2 t3) (THead (Flat Appl)
+u3 t2)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_:
+T).(\lambda (t2: T).(pr0 t1 t2)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1
+z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda (t2:
+T).(eq T (THead k0 u2 t3) (THead (Bind Abbr) u3 t2)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))))) (\lambda
+(_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t2: T).(pr0 z1 t2))))))
+(ex6_6 B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b:
+B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(eq T t1 (THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (u3: T).(\lambda (v2: T).(\lambda (t2: T).(eq T
+(THead k0 u2 t3) (THead (Bind b) v2 (THead (Flat Appl) (lift (S O) O u3)
+t2))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (u3:
+T).(\lambda (_: T).(\lambda (_: T).(pr0 u1 u3))))))) (\lambda (_: B).(\lambda
+(y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (v2: T).(\lambda (_: T).(pr0
+y1 v2))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (t2: T).(pr0 z1 t2)))))))))) (let H14 \def
+(eq_ind T t0 (\lambda (t: T).(pr0 t t3)) H4 t1 H9) in (let H15 \def (eq_ind T
+u0 (\lambda (t: T).(pr0 t u2)) H1 u1 H10) in (or3_intro0 (ex3_2 T T (\lambda
+(u3: T).(\lambda (t2: T).(eq T (THead (Flat Appl) u2 t3) (THead (Flat Appl)
+u3 t2)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_:
+T).(\lambda (t2: T).(pr0 t1 t2)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1
+z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda (t2:
+T).(eq T (THead (Flat Appl) u2 t3) (THead (Bind Abbr) u3 t2)))))) (\lambda
+(_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3)))))
+(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t2: T).(pr0 z1
+t2)))))) (ex6_6 B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b Abst))))))))
+(\lambda (b: B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda
+(_: T).(\lambda (_: T).(eq T t1 (THead (Bind b) y1 z1)))))))) (\lambda (b:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda (v2: T).(\lambda
+(t2: T).(eq T (THead (Flat Appl) u2 t3) (THead (Bind b) v2 (THead (Flat Appl)
+(lift (S O) O u3) t2))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (u3: T).(\lambda (_: T).(\lambda (_: T).(pr0 u1 u3)))))))
+(\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(v2: T).(\lambda (_: T).(pr0 y1 v2))))))) (\lambda (_: B).(\lambda (_:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (t2: T).(pr0 z1
+t2)))))))) (ex3_2_intro T T (\lambda (u3: T).(\lambda (t2: T).(eq T (THead
+(Flat Appl) u2 t3) (THead (Flat Appl) u3 t2)))) (\lambda (u3: T).(\lambda (_:
+T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t2: T).(pr0 t1 t2))) u2 t3
+(refl_equal T (THead (Flat Appl) u2 t3)) H15 H14)))) k H11)))))) H8)) H7)) x
+H3))))))))))))) (\lambda (H0: (pr0 (THead (Flat Appl) u1 t1) x)).(\lambda (u:
+T).(\lambda (v1: T).(\lambda (v2: T).(\lambda (t0: T).(\lambda (t3:
+T).(\lambda (H2: (eq T (THead (Flat Appl) v1 (THead (Bind Abst) u t0)) (THead
+(Flat Appl) u1 t1))).(\lambda (H3: (eq T (THead (Bind Abbr) v2 t3)
+x)).(\lambda (H1: (pr0 v1 v2)).(\lambda (H4: (pr0 t0 t3)).(let H5 \def
+(eq_ind_r T x (\lambda (t: T).(pr0 (THead (Flat Appl) u1 t1) t)) H0 (THead
+(Bind Abbr) v2 t3) H3) in (let H6 \def (eq_ind_r T x (\lambda (t: T).(pr0
+(THead (Flat Appl) u1 t1) t)) H (THead (Bind Abbr) v2 t3) H3) in (eq_ind T
+(THead (Bind Abbr) v2 t3) (\lambda (t: T).(or3 (ex3_2 T T (\lambda (u2:
+T).(\lambda (t2: T).(eq T t (THead (Flat Appl) u2 t2)))) (\lambda (u2:
+T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t2: T).(pr0 t1
+t2)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1 z1)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t2: T).(eq T t (THead (Bind
+Abbr) u2 t2)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda
+(_: T).(pr0 u1 u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (t2: T).(pr0 z1 t2)))))) (ex6_6 B T T T T T (\lambda (b:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind
+b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(u2: T).(\lambda (v3: T).(\lambda (t2: T).(eq T t (THead (Bind b) v3 (THead
+(Flat Appl) (lift (S O) O u2) t2))))))))) (\lambda (_: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(\lambda (_: T).(pr0 u1
+u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (v3: T).(\lambda (_: T).(pr0 y1 v3))))))) (\lambda (_:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(t2: T).(pr0 z1 t2)))))))))) (let H7 \def (f_equal T T (\lambda (e: T).(match
+e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow v1 | (TLRef _)
+\Rightarrow v1 | (THead _ t _) \Rightarrow t])) (THead (Flat Appl) v1 (THead
+(Bind Abst) u t0)) (THead (Flat Appl) u1 t1) H2) in ((let H8 \def (f_equal T
+T (\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _)
+\Rightarrow (THead (Bind Abst) u t0) | (TLRef _) \Rightarrow (THead (Bind
+Abst) u t0) | (THead _ _ t) \Rightarrow t])) (THead (Flat Appl) v1 (THead
+(Bind Abst) u t0)) (THead (Flat Appl) u1 t1) H2) in (\lambda (H9: (eq T v1
+u1)).(let H10 \def (eq_ind T v1 (\lambda (t: T).(pr0 t v2)) H1 u1 H9) in (let
+H11 \def (eq_ind_r T t1 (\lambda (t: T).(pr0 (THead (Flat Appl) u1 t) (THead
+(Bind Abbr) v2 t3))) H6 (THead (Bind Abst) u t0) H8) in (let H12 \def
+(eq_ind_r T t1 (\lambda (t: T).(pr0 (THead (Flat Appl) u1 t) (THead (Bind
+Abbr) v2 t3))) H5 (THead (Bind Abst) u t0) H8) in (eq_ind T (THead (Bind
+Abst) u t0) (\lambda (t: T).(or3 (ex3_2 T T (\lambda (u2: T).(\lambda (t2:
+T).(eq T (THead (Bind Abbr) v2 t3) (THead (Flat Appl) u2 t2)))) (\lambda (u2:
+T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t2: T).(pr0 t
+t2)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(eq T t (THead (Bind Abst) y1 z1)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t2: T).(eq T (THead (Bind Abbr)
+v2 t3) (THead (Bind Abbr) u2 t2)))))) (\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))))) (\lambda (_: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (t2: T).(pr0 z1 t2)))))) (ex6_6 B T T T T T
+(\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t
+(THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (v3: T).(\lambda (t2: T).(eq T (THead (Bind
+Abbr) v2 t3) (THead (Bind b) v3 (THead (Flat Appl) (lift (S O) O u2)
+t2))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (u2:
+T).(\lambda (_: T).(\lambda (_: T).(pr0 u1 u2))))))) (\lambda (_: B).(\lambda
+(y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (v3: T).(\lambda (_: T).(pr0
+y1 v3))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (t2: T).(pr0 z1 t2)))))))))) (or3_intro1 (ex3_2 T
+T (\lambda (u2: T).(\lambda (t2: T).(eq T (THead (Bind Abbr) v2 t3) (THead
+(Flat Appl) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda
+(_: T).(\lambda (t2: T).(pr0 (THead (Bind Abst) u t0) t2)))) (ex4_4 T T T T
+(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T
+(THead (Bind Abst) u t0) (THead (Bind Abst) y1 z1)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t2: T).(eq T (THead (Bind Abbr)
+v2 t3) (THead (Bind Abbr) u2 t2)))))) (\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))))) (\lambda (_: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (t2: T).(pr0 z1 t2)))))) (ex6_6 B T T T T T
+(\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T
+(THead (Bind Abst) u t0) (THead (Bind b) y1 z1)))))))) (\lambda (b:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (v3: T).(\lambda
+(t2: T).(eq T (THead (Bind Abbr) v2 t3) (THead (Bind b) v3 (THead (Flat Appl)
+(lift (S O) O u2) t2))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (_: T).(\lambda (_: T).(pr0 u1 u2)))))))
+(\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(v3: T).(\lambda (_: T).(pr0 y1 v3))))))) (\lambda (_: B).(\lambda (_:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (t2: T).(pr0 z1
+t2)))))))) (ex4_4_intro T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda
+(_: T).(\lambda (_: T).(eq T (THead (Bind Abst) u t0) (THead (Bind Abst) y1
+z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t2:
+T).(eq T (THead (Bind Abbr) v2 t3) (THead (Bind Abbr) u2 t2)))))) (\lambda
+(_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2)))))
+(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t2: T).(pr0 z1
+t2))))) u t0 v2 t3 (refl_equal T (THead (Bind Abst) u t0)) (refl_equal T
+(THead (Bind Abbr) v2 t3)) H10 H4)) t1 H8)))))) H7)) x H3)))))))))))))
+(\lambda (H0: (pr0 (THead (Flat Appl) u1 t1) x)).(\lambda (b: B).(\lambda
+(v1: T).(\lambda (v2: T).(\lambda (u0: T).(\lambda (u2: T).(\lambda (t0:
+T).(\lambda (t3: T).(\lambda (H4: (eq T (THead (Flat Appl) v1 (THead (Bind b)
+u0 t0)) (THead (Flat Appl) u1 t1))).(\lambda (H5: (eq T (THead (Bind b) u2
+(THead (Flat Appl) (lift (S O) O v2) t3)) x)).(\lambda (H1: (not (eq B b
+Abst))).(\lambda (H2: (pr0 v1 v2)).(\lambda (H3: (pr0 u0 u2)).(\lambda (H6:
+(pr0 t0 t3)).(let H7 \def (eq_ind_r T x (\lambda (t: T).(pr0 (THead (Flat
+Appl) u1 t1) t)) H0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2)
+t3)) H5) in (let H8 \def (eq_ind_r T x (\lambda (t: T).(pr0 (THead (Flat
+Appl) u1 t1) t)) H (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2)
+t3)) H5) in (eq_ind T (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2)
+t3)) (\lambda (t: T).(or3 (ex3_2 T T (\lambda (u3: T).(\lambda (t2: T).(eq T
+t (THead (Flat Appl) u3 t2)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3)))
+(\lambda (_: T).(\lambda (t2: T).(pr0 t1 t2)))) (ex4_4 T T T T (\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind
+Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda
+(t2: T).(eq T t (THead (Bind Abbr) u3 t2)))))) (\lambda (_: T).(\lambda (_:
+T).(\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))))) (\lambda (_: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (t2: T).(pr0 z1 t2)))))) (ex6_6 B T T T T T
+(\lambda (b0: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(not (eq B b0 Abst)))))))) (\lambda (b0: B).(\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t1
+(THead (Bind b0) y1 z1)))))))) (\lambda (b0: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (u3: T).(\lambda (v3: T).(\lambda (t2: T).(eq T t (THead (Bind
+b0) v3 (THead (Flat Appl) (lift (S O) O u3) t2))))))))) (\lambda (_:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda (_: T).(\lambda
+(_: T).(pr0 u1 u3))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (v3: T).(\lambda (_: T).(pr0 y1 v3)))))))
+(\lambda (_: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (t2: T).(pr0 z1 t2)))))))))) (let H9 \def (f_equal T T (\lambda
+(e: T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow v1
+| (TLRef _) \Rightarrow v1 | (THead _ t _) \Rightarrow t])) (THead (Flat
+Appl) v1 (THead (Bind b) u0 t0)) (THead (Flat Appl) u1 t1) H4) in ((let H10
+\def (f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T)
+with [(TSort _) \Rightarrow (THead (Bind b) u0 t0) | (TLRef _) \Rightarrow
+(THead (Bind b) u0 t0) | (THead _ _ t) \Rightarrow t])) (THead (Flat Appl) v1
+(THead (Bind b) u0 t0)) (THead (Flat Appl) u1 t1) H4) in (\lambda (H11: (eq T
+v1 u1)).(let H12 \def (eq_ind T v1 (\lambda (t: T).(pr0 t v2)) H2 u1 H11) in
+(let H13 \def (eq_ind_r T t1 (\lambda (t: T).(pr0 (THead (Flat Appl) u1 t)
+(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t3)))) H8 (THead
+(Bind b) u0 t0) H10) in (let H14 \def (eq_ind_r T t1 (\lambda (t: T).(pr0
+(THead (Flat Appl) u1 t) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O
+v2) t3)))) H7 (THead (Bind b) u0 t0) H10) in (eq_ind T (THead (Bind b) u0 t0)
+(\lambda (t: T).(or3 (ex3_2 T T (\lambda (u3: T).(\lambda (t2: T).(eq T
+(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t3)) (THead (Flat
+Appl) u3 t2)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_:
+T).(\lambda (t2: T).(pr0 t t2)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t (THead (Bind Abst) y1
+z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda (t2:
+T).(eq T (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t3)) (THead
+(Bind Abbr) u3 t2)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u3:
+T).(\lambda (_: T).(pr0 u1 u3))))) (\lambda (_: T).(\lambda (z1: T).(\lambda
+(_: T).(\lambda (t2: T).(pr0 z1 t2)))))) (ex6_6 B T T T T T (\lambda (b0:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(not (eq B b0 Abst)))))))) (\lambda (b0: B).(\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t (THead (Bind
+b0) y1 z1)))))))) (\lambda (b0: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(u3: T).(\lambda (v3: T).(\lambda (t2: T).(eq T (THead (Bind b) u2 (THead
+(Flat Appl) (lift (S O) O v2) t3)) (THead (Bind b0) v3 (THead (Flat Appl)
+(lift (S O) O u3) t2))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (u3: T).(\lambda (_: T).(\lambda (_: T).(pr0 u1 u3)))))))
+(\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(v3: T).(\lambda (_: T).(pr0 y1 v3))))))) (\lambda (_: B).(\lambda (_:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (t2: T).(pr0 z1
+t2)))))))))) (or3_intro2 (ex3_2 T T (\lambda (u3: T).(\lambda (t2: T).(eq T
+(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t3)) (THead (Flat
+Appl) u3 t2)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_:
+T).(\lambda (t2: T).(pr0 (THead (Bind b) u0 t0) t2)))) (ex4_4 T T T T
+(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T
+(THead (Bind b) u0 t0) (THead (Bind Abst) y1 z1)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u3: T).(\lambda (t2: T).(eq T (THead (Bind b) u2
+(THead (Flat Appl) (lift (S O) O v2) t3)) (THead (Bind Abbr) u3 t2))))))
+(\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda (_: T).(pr0 u1
+u3))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t2:
+T).(pr0 z1 t2)))))) (ex6_6 B T T T T T (\lambda (b0: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B
+b0 Abst)))))))) (\lambda (b0: B).(\lambda (y1: T).(\lambda (z1: T).(\lambda
+(_: T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind b) u0 t0) (THead
+(Bind b0) y1 z1)))))))) (\lambda (b0: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (u3: T).(\lambda (v3: T).(\lambda (t2: T).(eq T (THead (Bind b)
+u2 (THead (Flat Appl) (lift (S O) O v2) t3)) (THead (Bind b0) v3 (THead (Flat
+Appl) (lift (S O) O u3) t2))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda
+(_: T).(\lambda (u3: T).(\lambda (_: T).(\lambda (_: T).(pr0 u1 u3)))))))
+(\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(v3: T).(\lambda (_: T).(pr0 y1 v3))))))) (\lambda (_: B).(\lambda (_:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (t2: T).(pr0 z1
+t2)))))))) (ex6_6_intro B T T T T T (\lambda (b0: B).(\lambda (_: T).(\lambda
+(_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b0
+Abst)))))))) (\lambda (b0: B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind b) u0 t0) (THead (Bind
+b0) y1 z1)))))))) (\lambda (b0: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(u3: T).(\lambda (v3: T).(\lambda (t2: T).(eq T (THead (Bind b) u2 (THead
+(Flat Appl) (lift (S O) O v2) t3)) (THead (Bind b0) v3 (THead (Flat Appl)
+(lift (S O) O u3) t2))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (u3: T).(\lambda (_: T).(\lambda (_: T).(pr0 u1 u3)))))))
+(\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(v3: T).(\lambda (_: T).(pr0 y1 v3))))))) (\lambda (_: B).(\lambda (_:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (t2: T).(pr0 z1
+t2))))))) b u0 t0 v2 u2 t3 H1 (refl_equal T (THead (Bind b) u0 t0))
+(refl_equal T (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t3)))
+H12 H3 H6)) t1 H10)))))) H9)) x H5))))))))))))))))) (\lambda (H0: (pr0 (THead
+(Flat Appl) u1 t1) x)).(\lambda (u0: T).(\lambda (u2: T).(\lambda (t0:
+T).(\lambda (t3: T).(\lambda (w: T).(\lambda (H3: (eq T (THead (Bind Abbr) u0
+t0) (THead (Flat Appl) u1 t1))).(\lambda (H4: (eq T (THead (Bind Abbr) u2 w)
+x)).(\lambda (_: (pr0 u0 u2)).(\lambda (_: (pr0 t0 t3)).(\lambda (_: (subst0
+O u2 t3 w)).(let H6 \def (eq_ind_r T x (\lambda (t: T).(pr0 (THead (Flat
+Appl) u1 t1) t)) H0 (THead (Bind Abbr) u2 w) H4) in (let H7 \def (eq_ind_r T
+x (\lambda (t: T).(pr0 (THead (Flat Appl) u1 t1) t)) H (THead (Bind Abbr) u2
+w) H4) in (eq_ind T (THead (Bind Abbr) u2 w) (\lambda (t: T).(or3 (ex3_2 T T
+(\lambda (u3: T).(\lambda (t2: T).(eq T t (THead (Flat Appl) u3 t2))))
+(\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t2:
+T).(pr0 t1 t2)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda
+(_: T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1 z1)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u3: T).(\lambda (t2: T).(eq T t (THead (Bind
+Abbr) u3 t2)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda
+(_: T).(pr0 u1 u3))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (t2: T).(pr0 z1 t2)))))) (ex6_6 B T T T T T (\lambda (b:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind
+b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(u3: T).(\lambda (v2: T).(\lambda (t2: T).(eq T t (THead (Bind b) v2 (THead
+(Flat Appl) (lift (S O) O u3) t2))))))))) (\lambda (_: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (u3: T).(\lambda (_: T).(\lambda (_: T).(pr0 u1
+u3))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1 v2))))))) (\lambda (_:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(t2: T).(pr0 z1 t2)))))))))) (let H8 \def (eq_ind T (THead (Bind Abbr) u0 t0)
+(\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) with [(TSort _)
+\Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow
+(match k in K return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow True |
+(Flat _) \Rightarrow False])])) I (THead (Flat Appl) u1 t1) H3) in (False_ind
+(or3 (ex3_2 T T (\lambda (u3: T).(\lambda (t2: T).(eq T (THead (Bind Abbr) u2
+w) (THead (Flat Appl) u3 t2)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1
+u3))) (\lambda (_: T).(\lambda (t2: T).(pr0 t1 t2)))) (ex4_4 T T T T (\lambda
+(y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead
+(Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u3:
+T).(\lambda (t2: T).(eq T (THead (Bind Abbr) u2 w) (THead (Bind Abbr) u3
+t2)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda (_:
+T).(pr0 u1 u3))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda
+(t2: T).(pr0 z1 t2)))))) (ex6_6 B T T T T T (\lambda (b: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B
+b Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind b) y1 z1))))))))
+(\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda
+(v2: T).(\lambda (t2: T).(eq T (THead (Bind Abbr) u2 w) (THead (Bind b) v2
+(THead (Flat Appl) (lift (S O) O u3) t2))))))))) (\lambda (_: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (u3: T).(\lambda (_: T).(\lambda (_: T).(pr0 u1
+u3))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1 v2))))))) (\lambda (_:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(t2: T).(pr0 z1 t2))))))))) H8)) x H4)))))))))))))) (\lambda (_: (pr0 (THead
+(Flat Appl) u1 t1) x)).(\lambda (b: B).(\lambda (t0: T).(\lambda (t3:
+T).(\lambda (u: T).(\lambda (H2: (eq T (THead (Bind b) u (lift (S O) O t0))
+(THead (Flat Appl) u1 t1))).(\lambda (H3: (eq T t3 x)).(\lambda (_: (not (eq
+B b Abst))).(\lambda (H4: (pr0 t0 t3)).(let H5 \def (eq_ind T t3 (\lambda (t:
+T).(pr0 t0 t)) H4 x H3) in (let H6 \def (eq_ind T (THead (Bind b) u (lift (S
+O) O t0)) (\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) with
+[(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _)
+\Rightarrow (match k in K return (\lambda (_: K).Prop) with [(Bind _)
+\Rightarrow True | (Flat _) \Rightarrow False])])) I (THead (Flat Appl) u1
+t1) H2) in (False_ind (or3 (ex3_2 T T (\lambda (u2: T).(\lambda (t2: T).(eq T
+x (THead (Flat Appl) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2)))
+(\lambda (_: T).(\lambda (t2: T).(pr0 t1 t2)))) (ex4_4 T T T T (\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind
+Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda
+(t2: T).(eq T x (THead (Bind Abbr) u2 t2)))))) (\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))))) (\lambda (_: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (t2: T).(pr0 z1 t2)))))) (ex6_6 B T T T T T
+(\lambda (b0: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(not (eq B b0 Abst)))))))) (\lambda (b0: B).(\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t1
+(THead (Bind b0) y1 z1)))))))) (\lambda (b0: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (v2: T).(\lambda (t2: T).(eq T x (THead (Bind
+b0) v2 (THead (Flat Appl) (lift (S O) O u2) t2))))))))) (\lambda (_:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(\lambda
+(_: T).(pr0 u1 u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1 v2)))))))
+(\lambda (_: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (t2: T).(pr0 z1 t2))))))))) H6)))))))))))) (\lambda (_: (pr0
+(THead (Flat Appl) u1 t1) x)).(\lambda (t0: T).(\lambda (t3: T).(\lambda (u:
+T).(\lambda (H1: (eq T (THead (Flat Cast) u t0) (THead (Flat Appl) u1
+t1))).(\lambda (H2: (eq T t3 x)).(\lambda (H3: (pr0 t0 t3)).(let H4 \def
+(eq_ind T t3 (\lambda (t: T).(pr0 t0 t)) H3 x H2) in (let H5 \def (eq_ind T
+(THead (Flat Cast) u t0) (\lambda (ee: T).(match ee in T return (\lambda (_:
+T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False |
+(THead k _ _) \Rightarrow (match k in K return (\lambda (_: K).Prop) with
+[(Bind _) \Rightarrow False | (Flat f) \Rightarrow (match f in F return
+(\lambda (_: F).Prop) with [Appl \Rightarrow False | Cast \Rightarrow
+True])])])) I (THead (Flat Appl) u1 t1) H1) in (False_ind (or3 (ex3_2 T T
+(\lambda (u2: T).(\lambda (t2: T).(eq T x (THead (Flat Appl) u2 t2))))
+(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t2:
+T).(pr0 t1 t2)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda
+(_: T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1 z1)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t2: T).(eq T x (THead (Bind
+Abbr) u2 t2)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda
+(_: T).(pr0 u1 u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (t2: T).(pr0 z1 t2)))))) (ex6_6 B T T T T T (\lambda (b:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind
+b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(u2: T).(\lambda (v2: T).(\lambda (t2: T).(eq T x (THead (Bind b) v2 (THead
+(Flat Appl) (lift (S O) O u2) t2))))))))) (\lambda (_: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(\lambda (_: T).(pr0 u1
+u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1 v2))))))) (\lambda (_:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(t2: T).(pr0 z1 t2))))))))) H5)))))))))) H)))).
-axiom pr0_gen_cast:
+theorem pr0_gen_cast:
\forall (u1: T).(\forall (t1: T).(\forall (x: T).((pr0 (THead (Flat Cast) u1
t1) x) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t2: T).(eq T x (THead
(Flat Cast) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda
(_: T).(\lambda (t2: T).(pr0 t1 t2)))) (pr0 t1 x)))))
-.
+\def
+ \lambda (u1: T).(\lambda (t1: T).(\lambda (x: T).(\lambda (H: (pr0 (THead
+(Flat Cast) u1 t1) x)).(pr0_inv_coq (THead (Flat Cast) u1 t1) x (\lambda (_:
+T).(\lambda (t0: T).(or (ex3_2 T T (\lambda (u2: T).(\lambda (t2: T).(eq T t0
+(THead (Flat Cast) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2)))
+(\lambda (_: T).(\lambda (t2: T).(pr0 t1 t2)))) (pr0 t1 t0)))) (\lambda (H0:
+(pr0 (THead (Flat Cast) u1 t1) x)).(\lambda (t: T).(\lambda (H1: (eq T t
+(THead (Flat Cast) u1 t1))).(\lambda (H2: (eq T t x)).(let H3 \def (eq_ind T
+t (\lambda (t0: T).(eq T t0 (THead (Flat Cast) u1 t1))) H1 x H2) in (let H4
+\def (eq_ind T x (\lambda (t0: T).(pr0 (THead (Flat Cast) u1 t1) t0)) H0
+(THead (Flat Cast) u1 t1) H3) in (let H5 \def (eq_ind T x (\lambda (t0:
+T).(pr0 (THead (Flat Cast) u1 t1) t0)) H (THead (Flat Cast) u1 t1) H3) in
+(eq_ind_r T (THead (Flat Cast) u1 t1) (\lambda (t0: T).(or (ex3_2 T T
+(\lambda (u2: T).(\lambda (t2: T).(eq T t0 (THead (Flat Cast) u2 t2))))
+(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t2:
+T).(pr0 t1 t2)))) (pr0 t1 t0))) (or_introl (ex3_2 T T (\lambda (u2:
+T).(\lambda (t2: T).(eq T (THead (Flat Cast) u1 t1) (THead (Flat Cast) u2
+t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_:
+T).(\lambda (t2: T).(pr0 t1 t2)))) (pr0 t1 (THead (Flat Cast) u1 t1))
+(ex3_2_intro T T (\lambda (u2: T).(\lambda (t2: T).(eq T (THead (Flat Cast)
+u1 t1) (THead (Flat Cast) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1
+u2))) (\lambda (_: T).(\lambda (t2: T).(pr0 t1 t2))) u1 t1 (refl_equal T
+(THead (Flat Cast) u1 t1)) (pr0_refl u1) (pr0_refl t1))) x H3))))))))
+(\lambda (H0: (pr0 (THead (Flat Cast) u1 t1) x)).(\lambda (u0: T).(\lambda
+(u2: T).(\lambda (t0: T).(\lambda (t3: T).(\lambda (k: K).(\lambda (H2: (eq T
+(THead k u0 t0) (THead (Flat Cast) u1 t1))).(\lambda (H3: (eq T (THead k u2
+t3) x)).(\lambda (H1: (pr0 u0 u2)).(\lambda (H4: (pr0 t0 t3)).(let H5 \def
+(eq_ind_r T x (\lambda (t: T).(pr0 (THead (Flat Cast) u1 t1) t)) H0 (THead k
+u2 t3) H3) in (let H6 \def (eq_ind_r T x (\lambda (t: T).(pr0 (THead (Flat
+Cast) u1 t1) t)) H (THead k u2 t3) H3) in (eq_ind T (THead k u2 t3) (\lambda
+(t: T).(or (ex3_2 T T (\lambda (u3: T).(\lambda (t2: T).(eq T t (THead (Flat
+Cast) u3 t2)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_:
+T).(\lambda (t2: T).(pr0 t1 t2)))) (pr0 t1 t))) (let H7 \def (f_equal T K
+(\lambda (e: T).(match e in T return (\lambda (_: T).K) with [(TSort _)
+\Rightarrow k | (TLRef _) \Rightarrow k | (THead k0 _ _) \Rightarrow k0]))
+(THead k u0 t0) (THead (Flat Cast) u1 t1) H2) in ((let H8 \def (f_equal T T
+(\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _)
+\Rightarrow u0 | (TLRef _) \Rightarrow u0 | (THead _ t _) \Rightarrow t]))
+(THead k u0 t0) (THead (Flat Cast) u1 t1) H2) in ((let H9 \def (f_equal T T
+(\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _)
+\Rightarrow t0 | (TLRef _) \Rightarrow t0 | (THead _ _ t) \Rightarrow t]))
+(THead k u0 t0) (THead (Flat Cast) u1 t1) H2) in (\lambda (H10: (eq T u0
+u1)).(\lambda (H11: (eq K k (Flat Cast))).(let H12 \def (eq_ind K k (\lambda
+(k0: K).(pr0 (THead (Flat Cast) u1 t1) (THead k0 u2 t3))) H6 (Flat Cast) H11)
+in (let H13 \def (eq_ind K k (\lambda (k0: K).(pr0 (THead (Flat Cast) u1 t1)
+(THead k0 u2 t3))) H5 (Flat Cast) H11) in (eq_ind_r K (Flat Cast) (\lambda
+(k0: K).(or (ex3_2 T T (\lambda (u3: T).(\lambda (t2: T).(eq T (THead k0 u2
+t3) (THead (Flat Cast) u3 t2)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1
+u3))) (\lambda (_: T).(\lambda (t2: T).(pr0 t1 t2)))) (pr0 t1 (THead k0 u2
+t3)))) (let H14 \def (eq_ind T t0 (\lambda (t: T).(pr0 t t3)) H4 t1 H9) in
+(let H15 \def (eq_ind T u0 (\lambda (t: T).(pr0 t u2)) H1 u1 H10) in
+(or_introl (ex3_2 T T (\lambda (u3: T).(\lambda (t2: T).(eq T (THead (Flat
+Cast) u2 t3) (THead (Flat Cast) u3 t2)))) (\lambda (u3: T).(\lambda (_:
+T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t2: T).(pr0 t1 t2)))) (pr0 t1
+(THead (Flat Cast) u2 t3)) (ex3_2_intro T T (\lambda (u3: T).(\lambda (t2:
+T).(eq T (THead (Flat Cast) u2 t3) (THead (Flat Cast) u3 t2)))) (\lambda (u3:
+T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t2: T).(pr0 t1
+t2))) u2 t3 (refl_equal T (THead (Flat Cast) u2 t3)) H15 H14)))) k H11))))))
+H8)) H7)) x H3))))))))))))) (\lambda (H0: (pr0 (THead (Flat Cast) u1 t1)
+x)).(\lambda (u: T).(\lambda (v1: T).(\lambda (v2: T).(\lambda (t0:
+T).(\lambda (t3: T).(\lambda (H2: (eq T (THead (Flat Appl) v1 (THead (Bind
+Abst) u t0)) (THead (Flat Cast) u1 t1))).(\lambda (H3: (eq T (THead (Bind
+Abbr) v2 t3) x)).(\lambda (_: (pr0 v1 v2)).(\lambda (_: (pr0 t0 t3)).(let H5
+\def (eq_ind_r T x (\lambda (t: T).(pr0 (THead (Flat Cast) u1 t1) t)) H0
+(THead (Bind Abbr) v2 t3) H3) in (let H6 \def (eq_ind_r T x (\lambda (t:
+T).(pr0 (THead (Flat Cast) u1 t1) t)) H (THead (Bind Abbr) v2 t3) H3) in
+(eq_ind T (THead (Bind Abbr) v2 t3) (\lambda (t: T).(or (ex3_2 T T (\lambda
+(u2: T).(\lambda (t2: T).(eq T t (THead (Flat Cast) u2 t2)))) (\lambda (u2:
+T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t2: T).(pr0 t1
+t2)))) (pr0 t1 t))) (let H7 \def (eq_ind T (THead (Flat Appl) v1 (THead (Bind
+Abst) u t0)) (\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop)
+with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k _
+_) \Rightarrow (match k in K return (\lambda (_: K).Prop) with [(Bind _)
+\Rightarrow False | (Flat f) \Rightarrow (match f in F return (\lambda (_:
+F).Prop) with [Appl \Rightarrow True | Cast \Rightarrow False])])])) I (THead
+(Flat Cast) u1 t1) H2) in (False_ind (or (ex3_2 T T (\lambda (u2: T).(\lambda
+(t2: T).(eq T (THead (Bind Abbr) v2 t3) (THead (Flat Cast) u2 t2)))) (\lambda
+(u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t2: T).(pr0
+t1 t2)))) (pr0 t1 (THead (Bind Abbr) v2 t3))) H7)) x H3))))))))))))) (\lambda
+(H0: (pr0 (THead (Flat Cast) u1 t1) x)).(\lambda (b: B).(\lambda (v1:
+T).(\lambda (v2: T).(\lambda (u0: T).(\lambda (u2: T).(\lambda (t0:
+T).(\lambda (t3: T).(\lambda (H4: (eq T (THead (Flat Appl) v1 (THead (Bind b)
+u0 t0)) (THead (Flat Cast) u1 t1))).(\lambda (H5: (eq T (THead (Bind b) u2
+(THead (Flat Appl) (lift (S O) O v2) t3)) x)).(\lambda (_: (not (eq B b
+Abst))).(\lambda (_: (pr0 v1 v2)).(\lambda (_: (pr0 u0 u2)).(\lambda (_: (pr0
+t0 t3)).(let H7 \def (eq_ind_r T x (\lambda (t: T).(pr0 (THead (Flat Cast) u1
+t1) t)) H0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t3)) H5)
+in (let H8 \def (eq_ind_r T x (\lambda (t: T).(pr0 (THead (Flat Cast) u1 t1)
+t)) H (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t3)) H5) in
+(eq_ind T (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t3))
+(\lambda (t: T).(or (ex3_2 T T (\lambda (u3: T).(\lambda (t2: T).(eq T t
+(THead (Flat Cast) u3 t2)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3)))
+(\lambda (_: T).(\lambda (t2: T).(pr0 t1 t2)))) (pr0 t1 t))) (let H9 \def
+(eq_ind T (THead (Flat Appl) v1 (THead (Bind b) u0 t0)) (\lambda (ee:
+T).(match ee in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow
+False | (TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow (match k in K
+return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow False | (Flat f)
+\Rightarrow (match f in F return (\lambda (_: F).Prop) with [Appl \Rightarrow
+True | Cast \Rightarrow False])])])) I (THead (Flat Cast) u1 t1) H4) in
+(False_ind (or (ex3_2 T T (\lambda (u3: T).(\lambda (t2: T).(eq T (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t3)) (THead (Flat Cast) u3
+t2)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_:
+T).(\lambda (t2: T).(pr0 t1 t2)))) (pr0 t1 (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t3)))) H9)) x H5))))))))))))))))) (\lambda (H0: (pr0
+(THead (Flat Cast) u1 t1) x)).(\lambda (u0: T).(\lambda (u2: T).(\lambda (t0:
+T).(\lambda (t3: T).(\lambda (w: T).(\lambda (H3: (eq T (THead (Bind Abbr) u0
+t0) (THead (Flat Cast) u1 t1))).(\lambda (H4: (eq T (THead (Bind Abbr) u2 w)
+x)).(\lambda (_: (pr0 u0 u2)).(\lambda (_: (pr0 t0 t3)).(\lambda (_: (subst0
+O u2 t3 w)).(let H6 \def (eq_ind_r T x (\lambda (t: T).(pr0 (THead (Flat
+Cast) u1 t1) t)) H0 (THead (Bind Abbr) u2 w) H4) in (let H7 \def (eq_ind_r T
+x (\lambda (t: T).(pr0 (THead (Flat Cast) u1 t1) t)) H (THead (Bind Abbr) u2
+w) H4) in (eq_ind T (THead (Bind Abbr) u2 w) (\lambda (t: T).(or (ex3_2 T T
+(\lambda (u3: T).(\lambda (t2: T).(eq T t (THead (Flat Cast) u3 t2))))
+(\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t2:
+T).(pr0 t1 t2)))) (pr0 t1 t))) (let H8 \def (eq_ind T (THead (Bind Abbr) u0
+t0) (\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) with [(TSort
+_) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _)
+\Rightarrow (match k in K return (\lambda (_: K).Prop) with [(Bind _)
+\Rightarrow True | (Flat _) \Rightarrow False])])) I (THead (Flat Cast) u1
+t1) H3) in (False_ind (or (ex3_2 T T (\lambda (u3: T).(\lambda (t2: T).(eq T
+(THead (Bind Abbr) u2 w) (THead (Flat Cast) u3 t2)))) (\lambda (u3:
+T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t2: T).(pr0 t1
+t2)))) (pr0 t1 (THead (Bind Abbr) u2 w))) H8)) x H4)))))))))))))) (\lambda
+(_: (pr0 (THead (Flat Cast) u1 t1) x)).(\lambda (b: B).(\lambda (t0:
+T).(\lambda (t3: T).(\lambda (u: T).(\lambda (H2: (eq T (THead (Bind b) u
+(lift (S O) O t0)) (THead (Flat Cast) u1 t1))).(\lambda (H3: (eq T t3
+x)).(\lambda (_: (not (eq B b Abst))).(\lambda (H4: (pr0 t0 t3)).(let H5 \def
+(eq_ind T t3 (\lambda (t: T).(pr0 t0 t)) H4 x H3) in (let H6 \def (eq_ind T
+(THead (Bind b) u (lift (S O) O t0)) (\lambda (ee: T).(match ee in T return
+(\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _)
+\Rightarrow False | (THead k _ _) \Rightarrow (match k in K return (\lambda
+(_: K).Prop) with [(Bind _) \Rightarrow True | (Flat _) \Rightarrow
+False])])) I (THead (Flat Cast) u1 t1) H2) in (False_ind (or (ex3_2 T T
+(\lambda (u2: T).(\lambda (t2: T).(eq T x (THead (Flat Cast) u2 t2))))
+(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t2:
+T).(pr0 t1 t2)))) (pr0 t1 x)) H6)))))))))))) (\lambda (_: (pr0 (THead (Flat
+Cast) u1 t1) x)).(\lambda (t0: T).(\lambda (t3: T).(\lambda (u: T).(\lambda
+(H1: (eq T (THead (Flat Cast) u t0) (THead (Flat Cast) u1 t1))).(\lambda (H2:
+(eq T t3 x)).(\lambda (H3: (pr0 t0 t3)).(let H4 \def (eq_ind T t3 (\lambda
+(t: T).(pr0 t0 t)) H3 x H2) in (let H5 \def (f_equal T T (\lambda (e:
+T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow u |
+(TLRef _) \Rightarrow u | (THead _ t _) \Rightarrow t])) (THead (Flat Cast) u
+t0) (THead (Flat Cast) u1 t1) H1) in ((let H6 \def (f_equal T T (\lambda (e:
+T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow t0 |
+(TLRef _) \Rightarrow t0 | (THead _ _ t) \Rightarrow t])) (THead (Flat Cast)
+u t0) (THead (Flat Cast) u1 t1) H1) in (\lambda (_: (eq T u u1)).(let H8 \def
+(eq_ind T t0 (\lambda (t: T).(pr0 t x)) H4 t1 H6) in (or_intror (ex3_2 T T
+(\lambda (u2: T).(\lambda (t2: T).(eq T x (THead (Flat Cast) u2 t2))))
+(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t2:
+T).(pr0 t1 t2)))) (pr0 t1 x) H8)))) H5)))))))))) H)))).
-axiom pr0_gen_abbr:
+theorem pr0_gen_abbr:
\forall (u1: T).(\forall (t1: T).(\forall (x: T).((pr0 (THead (Bind Abbr) u1
t1) x) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t2: T).(eq T x (THead
(Bind Abbr) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda
(u2: T).(\lambda (t2: T).(or (pr0 t1 t2) (ex2 T (\lambda (y: T).(pr0 t1 y))
(\lambda (y: T).(subst0 O u2 y t2))))))) (pr0 t1 (lift (S O) O x))))))
-.
+\def
+ \lambda (u1: T).(\lambda (t1: T).(\lambda (x: T).(\lambda (H: (pr0 (THead
+(Bind Abbr) u1 t1) x)).(let H0 \def (match H in pr0 return (\lambda (t:
+T).(\lambda (t0: T).(\lambda (_: (pr0 t t0)).((eq T t (THead (Bind Abbr) u1
+t1)) \to ((eq T t0 x) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t2:
+T).(eq T x (THead (Bind Abbr) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0
+u1 u2))) (\lambda (u2: T).(\lambda (t2: T).(or (pr0 t1 t2) (ex2 T (\lambda
+(y: T).(pr0 t1 y)) (\lambda (y: T).(subst0 O u2 y t2))))))) (pr0 t1 (lift (S
+O) O x)))))))) with [(pr0_refl t) \Rightarrow (\lambda (H0: (eq T t (THead
+(Bind Abbr) u1 t1))).(\lambda (H1: (eq T t x)).(eq_ind T (THead (Bind Abbr)
+u1 t1) (\lambda (t0: T).((eq T t0 x) \to (or (ex3_2 T T (\lambda (u2:
+T).(\lambda (t2: T).(eq T x (THead (Bind Abbr) u2 t2)))) (\lambda (u2:
+T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (u2: T).(\lambda (t2: T).(or (pr0
+t1 t2) (ex2 T (\lambda (y: T).(pr0 t1 y)) (\lambda (y: T).(subst0 O u2 y
+t2))))))) (pr0 t1 (lift (S O) O x))))) (\lambda (H2: (eq T (THead (Bind Abbr)
+u1 t1) x)).(eq_ind T (THead (Bind Abbr) u1 t1) (\lambda (t0: T).(or (ex3_2 T
+T (\lambda (u2: T).(\lambda (t2: T).(eq T t0 (THead (Bind Abbr) u2 t2))))
+(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (u2: T).(\lambda (t2:
+T).(or (pr0 t1 t2) (ex2 T (\lambda (y: T).(pr0 t1 y)) (\lambda (y: T).(subst0
+O u2 y t2))))))) (pr0 t1 (lift (S O) O t0)))) (or_introl (ex3_2 T T (\lambda
+(u2: T).(\lambda (t2: T).(eq T (THead (Bind Abbr) u1 t1) (THead (Bind Abbr)
+u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (u2:
+T).(\lambda (t2: T).(or (pr0 t1 t2) (ex2 T (\lambda (y: T).(pr0 t1 y))
+(\lambda (y: T).(subst0 O u2 y t2))))))) (pr0 t1 (lift (S O) O (THead (Bind
+Abbr) u1 t1))) (ex3_2_intro T T (\lambda (u2: T).(\lambda (t2: T).(eq T
+(THead (Bind Abbr) u1 t1) (THead (Bind Abbr) u2 t2)))) (\lambda (u2:
+T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (u2: T).(\lambda (t2: T).(or (pr0
+t1 t2) (ex2 T (\lambda (y: T).(pr0 t1 y)) (\lambda (y: T).(subst0 O u2 y
+t2)))))) u1 t1 (refl_equal T (THead (Bind Abbr) u1 t1)) (pr0_refl u1)
+(or_introl (pr0 t1 t1) (ex2 T (\lambda (y: T).(pr0 t1 y)) (\lambda (y:
+T).(subst0 O u1 y t1))) (pr0_refl t1)))) x H2)) t (sym_eq T t (THead (Bind
+Abbr) u1 t1) H0) H1))) | (pr0_comp u0 u2 H0 t0 t2 H1 k) \Rightarrow (\lambda
+(H2: (eq T (THead k u0 t0) (THead (Bind Abbr) u1 t1))).(\lambda (H3: (eq T
+(THead k u2 t2) x)).((let H4 \def (f_equal T T (\lambda (e: T).(match e in T
+return (\lambda (_: T).T) with [(TSort _) \Rightarrow t0 | (TLRef _)
+\Rightarrow t0 | (THead _ _ t) \Rightarrow t])) (THead k u0 t0) (THead (Bind
+Abbr) u1 t1) H2) in ((let H5 \def (f_equal T T (\lambda (e: T).(match e in T
+return (\lambda (_: T).T) with [(TSort _) \Rightarrow u0 | (TLRef _)
+\Rightarrow u0 | (THead _ t _) \Rightarrow t])) (THead k u0 t0) (THead (Bind
+Abbr) u1 t1) H2) in ((let H6 \def (f_equal T K (\lambda (e: T).(match e in T
+return (\lambda (_: T).K) with [(TSort _) \Rightarrow k | (TLRef _)
+\Rightarrow k | (THead k0 _ _) \Rightarrow k0])) (THead k u0 t0) (THead (Bind
+Abbr) u1 t1) H2) in (eq_ind K (Bind Abbr) (\lambda (k0: K).((eq T u0 u1) \to
+((eq T t0 t1) \to ((eq T (THead k0 u2 t2) x) \to ((pr0 u0 u2) \to ((pr0 t0
+t2) \to (or (ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T x (THead (Bind
+Abbr) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (u3:
+T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T (\lambda (y: T).(pr0 t1 y))
+(\lambda (y: T).(subst0 O u3 y t3))))))) (pr0 t1 (lift (S O) O x)))))))))
+(\lambda (H7: (eq T u0 u1)).(eq_ind T u1 (\lambda (t: T).((eq T t0 t1) \to
+((eq T (THead (Bind Abbr) u2 t2) x) \to ((pr0 t u2) \to ((pr0 t0 t2) \to (or
+(ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T x (THead (Bind Abbr) u3
+t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (u3:
+T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T (\lambda (y: T).(pr0 t1 y))
+(\lambda (y: T).(subst0 O u3 y t3))))))) (pr0 t1 (lift (S O) O x))))))))
+(\lambda (H8: (eq T t0 t1)).(eq_ind T t1 (\lambda (t: T).((eq T (THead (Bind
+Abbr) u2 t2) x) \to ((pr0 u1 u2) \to ((pr0 t t2) \to (or (ex3_2 T T (\lambda
+(u3: T).(\lambda (t3: T).(eq T x (THead (Bind Abbr) u3 t3)))) (\lambda (u3:
+T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (u3: T).(\lambda (t3: T).(or (pr0
+t1 t3) (ex2 T (\lambda (y: T).(pr0 t1 y)) (\lambda (y: T).(subst0 O u3 y
+t3))))))) (pr0 t1 (lift (S O) O x))))))) (\lambda (H9: (eq T (THead (Bind
+Abbr) u2 t2) x)).(eq_ind T (THead (Bind Abbr) u2 t2) (\lambda (t: T).((pr0 u1
+u2) \to ((pr0 t1 t2) \to (or (ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq
+T t (THead (Bind Abbr) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1
+u3))) (\lambda (u3: T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T (\lambda (y:
+T).(pr0 t1 y)) (\lambda (y: T).(subst0 O u3 y t3))))))) (pr0 t1 (lift (S O) O
+t)))))) (\lambda (H10: (pr0 u1 u2)).(\lambda (H11: (pr0 t1 t2)).(or_introl
+(ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T (THead (Bind Abbr) u2 t2)
+(THead (Bind Abbr) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3)))
+(\lambda (u3: T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T (\lambda (y: T).(pr0
+t1 y)) (\lambda (y: T).(subst0 O u3 y t3))))))) (pr0 t1 (lift (S O) O (THead
+(Bind Abbr) u2 t2))) (ex3_2_intro T T (\lambda (u3: T).(\lambda (t3: T).(eq T
+(THead (Bind Abbr) u2 t2) (THead (Bind Abbr) u3 t3)))) (\lambda (u3:
+T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (u3: T).(\lambda (t3: T).(or (pr0
+t1 t3) (ex2 T (\lambda (y: T).(pr0 t1 y)) (\lambda (y: T).(subst0 O u3 y
+t3)))))) u2 t2 (refl_equal T (THead (Bind Abbr) u2 t2)) H10 (or_introl (pr0
+t1 t2) (ex2 T (\lambda (y: T).(pr0 t1 y)) (\lambda (y: T).(subst0 O u2 y
+t2))) H11))))) x H9)) t0 (sym_eq T t0 t1 H8))) u0 (sym_eq T u0 u1 H7))) k
+(sym_eq K k (Bind Abbr) H6))) H5)) H4)) H3 H0 H1))) | (pr0_beta u v1 v2 H0 t0
+t2 H1) \Rightarrow (\lambda (H2: (eq T (THead (Flat Appl) v1 (THead (Bind
+Abst) u t0)) (THead (Bind Abbr) u1 t1))).(\lambda (H3: (eq T (THead (Bind
+Abbr) v2 t2) x)).((let H4 \def (eq_ind T (THead (Flat Appl) v1 (THead (Bind
+Abst) u t0)) (\lambda (e: T).(match e in T return (\lambda (_: T).Prop) with
+[(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _)
+\Rightarrow (match k in K return (\lambda (_: K).Prop) with [(Bind _)
+\Rightarrow False | (Flat _) \Rightarrow True])])) I (THead (Bind Abbr) u1
+t1) H2) in (False_ind ((eq T (THead (Bind Abbr) v2 t2) x) \to ((pr0 v1 v2)
+\to ((pr0 t0 t2) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T x
+(THead (Bind Abbr) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2)))
+(\lambda (u2: T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T (\lambda (y: T).(pr0
+t1 y)) (\lambda (y: T).(subst0 O u2 y t3))))))) (pr0 t1 (lift (S O) O x))))))
+H4)) H3 H0 H1))) | (pr0_upsilon b H0 v1 v2 H1 u0 u2 H2 t0 t2 H3) \Rightarrow
+(\lambda (H4: (eq T (THead (Flat Appl) v1 (THead (Bind b) u0 t0)) (THead
+(Bind Abbr) u1 t1))).(\lambda (H5: (eq T (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t2)) x)).((let H6 \def (eq_ind T (THead (Flat Appl)
+v1 (THead (Bind b) u0 t0)) (\lambda (e: T).(match e in T return (\lambda (_:
+T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False |
+(THead k _ _) \Rightarrow (match k in K return (\lambda (_: K).Prop) with
+[(Bind _) \Rightarrow False | (Flat _) \Rightarrow True])])) I (THead (Bind
+Abbr) u1 t1) H4) in (False_ind ((eq T (THead (Bind b) u2 (THead (Flat Appl)
+(lift (S O) O v2) t2)) x) \to ((not (eq B b Abst)) \to ((pr0 v1 v2) \to ((pr0
+u0 u2) \to ((pr0 t0 t2) \to (or (ex3_2 T T (\lambda (u3: T).(\lambda (t3:
+T).(eq T x (THead (Bind Abbr) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0
+u1 u3))) (\lambda (u3: T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T (\lambda
+(y: T).(pr0 t1 y)) (\lambda (y: T).(subst0 O u3 y t3))))))) (pr0 t1 (lift (S
+O) O x)))))))) H6)) H5 H0 H1 H2 H3))) | (pr0_delta u0 u2 H0 t0 t2 H1 w H2)
+\Rightarrow (\lambda (H3: (eq T (THead (Bind Abbr) u0 t0) (THead (Bind Abbr)
+u1 t1))).(\lambda (H4: (eq T (THead (Bind Abbr) u2 w) x)).((let H5 \def
+(f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) with
+[(TSort _) \Rightarrow t0 | (TLRef _) \Rightarrow t0 | (THead _ _ t)
+\Rightarrow t])) (THead (Bind Abbr) u0 t0) (THead (Bind Abbr) u1 t1) H3) in
+((let H6 \def (f_equal T T (\lambda (e: T).(match e in T return (\lambda (_:
+T).T) with [(TSort _) \Rightarrow u0 | (TLRef _) \Rightarrow u0 | (THead _ t
+_) \Rightarrow t])) (THead (Bind Abbr) u0 t0) (THead (Bind Abbr) u1 t1) H3)
+in (eq_ind T u1 (\lambda (t: T).((eq T t0 t1) \to ((eq T (THead (Bind Abbr)
+u2 w) x) \to ((pr0 t u2) \to ((pr0 t0 t2) \to ((subst0 O u2 t2 w) \to (or
+(ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T x (THead (Bind Abbr) u3
+t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (u3:
+T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T (\lambda (y: T).(pr0 t1 y))
+(\lambda (y: T).(subst0 O u3 y t3))))))) (pr0 t1 (lift (S O) O x)))))))))
+(\lambda (H7: (eq T t0 t1)).(eq_ind T t1 (\lambda (t: T).((eq T (THead (Bind
+Abbr) u2 w) x) \to ((pr0 u1 u2) \to ((pr0 t t2) \to ((subst0 O u2 t2 w) \to
+(or (ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T x (THead (Bind Abbr)
+u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (u3:
+T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T (\lambda (y: T).(pr0 t1 y))
+(\lambda (y: T).(subst0 O u3 y t3))))))) (pr0 t1 (lift (S O) O x))))))))
+(\lambda (H8: (eq T (THead (Bind Abbr) u2 w) x)).(eq_ind T (THead (Bind Abbr)
+u2 w) (\lambda (t: T).((pr0 u1 u2) \to ((pr0 t1 t2) \to ((subst0 O u2 t2 w)
+\to (or (ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T t (THead (Bind
+Abbr) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (u3:
+T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T (\lambda (y: T).(pr0 t1 y))
+(\lambda (y: T).(subst0 O u3 y t3))))))) (pr0 t1 (lift (S O) O t)))))))
+(\lambda (H9: (pr0 u1 u2)).(\lambda (H10: (pr0 t1 t2)).(\lambda (H11: (subst0
+O u2 t2 w)).(or_introl (ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T
+(THead (Bind Abbr) u2 w) (THead (Bind Abbr) u3 t3)))) (\lambda (u3:
+T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (u3: T).(\lambda (t3: T).(or (pr0
+t1 t3) (ex2 T (\lambda (y: T).(pr0 t1 y)) (\lambda (y: T).(subst0 O u3 y
+t3))))))) (pr0 t1 (lift (S O) O (THead (Bind Abbr) u2 w))) (ex3_2_intro T T
+(\lambda (u3: T).(\lambda (t3: T).(eq T (THead (Bind Abbr) u2 w) (THead (Bind
+Abbr) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (u3:
+T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T (\lambda (y: T).(pr0 t1 y))
+(\lambda (y: T).(subst0 O u3 y t3)))))) u2 w (refl_equal T (THead (Bind Abbr)
+u2 w)) H9 (or_intror (pr0 t1 w) (ex2 T (\lambda (y: T).(pr0 t1 y)) (\lambda
+(y: T).(subst0 O u2 y w))) (ex_intro2 T (\lambda (y: T).(pr0 t1 y)) (\lambda
+(y: T).(subst0 O u2 y w)) t2 H10 H11))))))) x H8)) t0 (sym_eq T t0 t1 H7)))
+u0 (sym_eq T u0 u1 H6))) H5)) H4 H0 H1 H2))) | (pr0_zeta b H0 t0 t2 H1 u)
+\Rightarrow (\lambda (H2: (eq T (THead (Bind b) u (lift (S O) O t0)) (THead
+(Bind Abbr) u1 t1))).(\lambda (H3: (eq T t2 x)).((let H4 \def (f_equal T T
+(\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _)
+\Rightarrow ((let rec lref_map (f: ((nat \to nat))) (d: nat) (t: T) on t: T
+\def (match t with [(TSort n) \Rightarrow (TSort n) | (TLRef i) \Rightarrow
+(TLRef (match (blt i d) with [true \Rightarrow i | false \Rightarrow (f i)]))
+| (THead k u0 t3) \Rightarrow (THead k (lref_map f d u0) (lref_map f (s k d)
+t3))]) in lref_map) (\lambda (x0: nat).(plus x0 (S O))) O t0) | (TLRef _)
+\Rightarrow ((let rec lref_map (f: ((nat \to nat))) (d: nat) (t: T) on t: T
+\def (match t with [(TSort n) \Rightarrow (TSort n) | (TLRef i) \Rightarrow
+(TLRef (match (blt i d) with [true \Rightarrow i | false \Rightarrow (f i)]))
+| (THead k u0 t3) \Rightarrow (THead k (lref_map f d u0) (lref_map f (s k d)
+t3))]) in lref_map) (\lambda (x0: nat).(plus x0 (S O))) O t0) | (THead _ _ t)
+\Rightarrow t])) (THead (Bind b) u (lift (S O) O t0)) (THead (Bind Abbr) u1
+t1) H2) in ((let H5 \def (f_equal T T (\lambda (e: T).(match e in T return
+(\lambda (_: T).T) with [(TSort _) \Rightarrow u | (TLRef _) \Rightarrow u |
+(THead _ t _) \Rightarrow t])) (THead (Bind b) u (lift (S O) O t0)) (THead
+(Bind Abbr) u1 t1) H2) in ((let H6 \def (f_equal T B (\lambda (e: T).(match e
+in T return (\lambda (_: T).B) with [(TSort _) \Rightarrow b | (TLRef _)
+\Rightarrow b | (THead k _ _) \Rightarrow (match k in K return (\lambda (_:
+K).B) with [(Bind b0) \Rightarrow b0 | (Flat _) \Rightarrow b])])) (THead
+(Bind b) u (lift (S O) O t0)) (THead (Bind Abbr) u1 t1) H2) in (eq_ind B Abbr
+(\lambda (b0: B).((eq T u u1) \to ((eq T (lift (S O) O t0) t1) \to ((eq T t2
+x) \to ((not (eq B b0 Abst)) \to ((pr0 t0 t2) \to (or (ex3_2 T T (\lambda
+(u2: T).(\lambda (t3: T).(eq T x (THead (Bind Abbr) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (u2: T).(\lambda (t3: T).(or (pr0
+t1 t3) (ex2 T (\lambda (y: T).(pr0 t1 y)) (\lambda (y: T).(subst0 O u2 y
+t3))))))) (pr0 t1 (lift (S O) O x))))))))) (\lambda (H7: (eq T u u1)).(eq_ind
+T u1 (\lambda (_: T).((eq T (lift (S O) O t0) t1) \to ((eq T t2 x) \to ((not
+(eq B Abbr Abst)) \to ((pr0 t0 t2) \to (or (ex3_2 T T (\lambda (u2:
+T).(\lambda (t3: T).(eq T x (THead (Bind Abbr) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (u2: T).(\lambda (t3: T).(or (pr0
+t1 t3) (ex2 T (\lambda (y: T).(pr0 t1 y)) (\lambda (y: T).(subst0 O u2 y
+t3))))))) (pr0 t1 (lift (S O) O x)))))))) (\lambda (H8: (eq T (lift (S O) O
+t0) t1)).(eq_ind T (lift (S O) O t0) (\lambda (t: T).((eq T t2 x) \to ((not
+(eq B Abbr Abst)) \to ((pr0 t0 t2) \to (or (ex3_2 T T (\lambda (u2:
+T).(\lambda (t3: T).(eq T x (THead (Bind Abbr) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (u2: T).(\lambda (t3: T).(or (pr0 t
+t3) (ex2 T (\lambda (y: T).(pr0 t y)) (\lambda (y: T).(subst0 O u2 y
+t3))))))) (pr0 t (lift (S O) O x))))))) (\lambda (H9: (eq T t2 x)).(eq_ind T
+x (\lambda (t: T).((not (eq B Abbr Abst)) \to ((pr0 t0 t) \to (or (ex3_2 T T
+(\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Bind Abbr) u2 t3))))
+(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (u2: T).(\lambda (t3:
+T).(or (pr0 (lift (S O) O t0) t3) (ex2 T (\lambda (y: T).(pr0 (lift (S O) O
+t0) y)) (\lambda (y: T).(subst0 O u2 y t3))))))) (pr0 (lift (S O) O t0) (lift
+(S O) O x)))))) (\lambda (_: (not (eq B Abbr Abst))).(\lambda (H11: (pr0 t0
+x)).(or_intror (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T x (THead
+(Bind Abbr) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda
+(u2: T).(\lambda (t3: T).(or (pr0 (lift (S O) O t0) t3) (ex2 T (\lambda (y:
+T).(pr0 (lift (S O) O t0) y)) (\lambda (y: T).(subst0 O u2 y t3))))))) (pr0
+(lift (S O) O t0) (lift (S O) O x)) (pr0_lift t0 x H11 (S O) O)))) t2 (sym_eq
+T t2 x H9))) t1 H8)) u (sym_eq T u u1 H7))) b (sym_eq B b Abbr H6))) H5))
+H4)) H3 H0 H1))) | (pr0_epsilon t0 t2 H0 u) \Rightarrow (\lambda (H1: (eq T
+(THead (Flat Cast) u t0) (THead (Bind Abbr) u1 t1))).(\lambda (H2: (eq T t2
+x)).((let H3 \def (eq_ind T (THead (Flat Cast) u t0) (\lambda (e: T).(match e
+in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef
+_) \Rightarrow False | (THead k _ _) \Rightarrow (match k in K return
+(\lambda (_: K).Prop) with [(Bind _) \Rightarrow False | (Flat _) \Rightarrow
+True])])) I (THead (Bind Abbr) u1 t1) H1) in (False_ind ((eq T t2 x) \to
+((pr0 t0 t2) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T x
+(THead (Bind Abbr) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2)))
+(\lambda (u2: T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T (\lambda (y: T).(pr0
+t1 y)) (\lambda (y: T).(subst0 O u2 y t3))))))) (pr0 t1 (lift (S O) O x)))))
+H3)) H2 H0)))]) in (H0 (refl_equal T (THead (Bind Abbr) u1 t1)) (refl_equal T
+x)))))).
-axiom pr0_gen_void:
+theorem pr0_gen_void:
\forall (u1: T).(\forall (t1: T).(\forall (x: T).((pr0 (THead (Bind Void) u1
t1) x) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t2: T).(eq T x (THead
(Bind Void) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda
(_: T).(\lambda (t2: T).(pr0 t1 t2)))) (pr0 t1 (lift (S O) O x))))))
-.
+\def
+ \lambda (u1: T).(\lambda (t1: T).(\lambda (x: T).(\lambda (H: (pr0 (THead
+(Bind Void) u1 t1) x)).(let H0 \def (match H in pr0 return (\lambda (t:
+T).(\lambda (t0: T).(\lambda (_: (pr0 t t0)).((eq T t (THead (Bind Void) u1
+t1)) \to ((eq T t0 x) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t2:
+T).(eq T x (THead (Bind Void) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0
+u1 u2))) (\lambda (_: T).(\lambda (t2: T).(pr0 t1 t2)))) (pr0 t1 (lift (S O)
+O x)))))))) with [(pr0_refl t) \Rightarrow (\lambda (H0: (eq T t (THead (Bind
+Void) u1 t1))).(\lambda (H1: (eq T t x)).(eq_ind T (THead (Bind Void) u1 t1)
+(\lambda (t0: T).((eq T t0 x) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda
+(t2: T).(eq T x (THead (Bind Void) u2 t2)))) (\lambda (u2: T).(\lambda (_:
+T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t2: T).(pr0 t1 t2)))) (pr0 t1
+(lift (S O) O x))))) (\lambda (H2: (eq T (THead (Bind Void) u1 t1)
+x)).(eq_ind T (THead (Bind Void) u1 t1) (\lambda (t0: T).(or (ex3_2 T T
+(\lambda (u2: T).(\lambda (t2: T).(eq T t0 (THead (Bind Void) u2 t2))))
+(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t2:
+T).(pr0 t1 t2)))) (pr0 t1 (lift (S O) O t0)))) (or_introl (ex3_2 T T (\lambda
+(u2: T).(\lambda (t2: T).(eq T (THead (Bind Void) u1 t1) (THead (Bind Void)
+u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_:
+T).(\lambda (t2: T).(pr0 t1 t2)))) (pr0 t1 (lift (S O) O (THead (Bind Void)
+u1 t1))) (ex3_2_intro T T (\lambda (u2: T).(\lambda (t2: T).(eq T (THead
+(Bind Void) u1 t1) (THead (Bind Void) u2 t2)))) (\lambda (u2: T).(\lambda (_:
+T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t2: T).(pr0 t1 t2))) u1 t1
+(refl_equal T (THead (Bind Void) u1 t1)) (pr0_refl u1) (pr0_refl t1))) x H2))
+t (sym_eq T t (THead (Bind Void) u1 t1) H0) H1))) | (pr0_comp u0 u2 H0 t0 t2
+H1 k) \Rightarrow (\lambda (H2: (eq T (THead k u0 t0) (THead (Bind Void) u1
+t1))).(\lambda (H3: (eq T (THead k u2 t2) x)).((let H4 \def (f_equal T T
+(\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _)
+\Rightarrow t0 | (TLRef _) \Rightarrow t0 | (THead _ _ t) \Rightarrow t]))
+(THead k u0 t0) (THead (Bind Void) u1 t1) H2) in ((let H5 \def (f_equal T T
+(\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _)
+\Rightarrow u0 | (TLRef _) \Rightarrow u0 | (THead _ t _) \Rightarrow t]))
+(THead k u0 t0) (THead (Bind Void) u1 t1) H2) in ((let H6 \def (f_equal T K
+(\lambda (e: T).(match e in T return (\lambda (_: T).K) with [(TSort _)
+\Rightarrow k | (TLRef _) \Rightarrow k | (THead k0 _ _) \Rightarrow k0]))
+(THead k u0 t0) (THead (Bind Void) u1 t1) H2) in (eq_ind K (Bind Void)
+(\lambda (k0: K).((eq T u0 u1) \to ((eq T t0 t1) \to ((eq T (THead k0 u2 t2)
+x) \to ((pr0 u0 u2) \to ((pr0 t0 t2) \to (or (ex3_2 T T (\lambda (u3:
+T).(\lambda (t3: T).(eq T x (THead (Bind Void) u3 t3)))) (\lambda (u3:
+T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1
+t3)))) (pr0 t1 (lift (S O) O x))))))))) (\lambda (H7: (eq T u0 u1)).(eq_ind T
+u1 (\lambda (t: T).((eq T t0 t1) \to ((eq T (THead (Bind Void) u2 t2) x) \to
+((pr0 t u2) \to ((pr0 t0 t2) \to (or (ex3_2 T T (\lambda (u3: T).(\lambda
+(t3: T).(eq T x (THead (Bind Void) u3 t3)))) (\lambda (u3: T).(\lambda (_:
+T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1
+(lift (S O) O x)))))))) (\lambda (H8: (eq T t0 t1)).(eq_ind T t1 (\lambda (t:
+T).((eq T (THead (Bind Void) u2 t2) x) \to ((pr0 u1 u2) \to ((pr0 t t2) \to
+(or (ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T x (THead (Bind Void)
+u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_:
+T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1 (lift (S O) O x))))))) (\lambda
+(H9: (eq T (THead (Bind Void) u2 t2) x)).(eq_ind T (THead (Bind Void) u2 t2)
+(\lambda (t: T).((pr0 u1 u2) \to ((pr0 t1 t2) \to (or (ex3_2 T T (\lambda
+(u3: T).(\lambda (t3: T).(eq T t (THead (Bind Void) u3 t3)))) (\lambda (u3:
+T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1
+t3)))) (pr0 t1 (lift (S O) O t)))))) (\lambda (H10: (pr0 u1 u2)).(\lambda
+(H11: (pr0 t1 t2)).(or_introl (ex3_2 T T (\lambda (u3: T).(\lambda (t3:
+T).(eq T (THead (Bind Void) u2 t2) (THead (Bind Void) u3 t3)))) (\lambda (u3:
+T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1
+t3)))) (pr0 t1 (lift (S O) O (THead (Bind Void) u2 t2))) (ex3_2_intro T T
+(\lambda (u3: T).(\lambda (t3: T).(eq T (THead (Bind Void) u2 t2) (THead
+(Bind Void) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda
+(_: T).(\lambda (t3: T).(pr0 t1 t3))) u2 t2 (refl_equal T (THead (Bind Void)
+u2 t2)) H10 H11)))) x H9)) t0 (sym_eq T t0 t1 H8))) u0 (sym_eq T u0 u1 H7)))
+k (sym_eq K k (Bind Void) H6))) H5)) H4)) H3 H0 H1))) | (pr0_beta u v1 v2 H0
+t0 t2 H1) \Rightarrow (\lambda (H2: (eq T (THead (Flat Appl) v1 (THead (Bind
+Abst) u t0)) (THead (Bind Void) u1 t1))).(\lambda (H3: (eq T (THead (Bind
+Abbr) v2 t2) x)).((let H4 \def (eq_ind T (THead (Flat Appl) v1 (THead (Bind
+Abst) u t0)) (\lambda (e: T).(match e in T return (\lambda (_: T).Prop) with
+[(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _)
+\Rightarrow (match k in K return (\lambda (_: K).Prop) with [(Bind _)
+\Rightarrow False | (Flat _) \Rightarrow True])])) I (THead (Bind Void) u1
+t1) H2) in (False_ind ((eq T (THead (Bind Abbr) v2 t2) x) \to ((pr0 v1 v2)
+\to ((pr0 t0 t2) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T x
+(THead (Bind Void) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2)))
+(\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1 (lift (S O) O x))))))
+H4)) H3 H0 H1))) | (pr0_upsilon b H0 v1 v2 H1 u0 u2 H2 t0 t2 H3) \Rightarrow
+(\lambda (H4: (eq T (THead (Flat Appl) v1 (THead (Bind b) u0 t0)) (THead
+(Bind Void) u1 t1))).(\lambda (H5: (eq T (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t2)) x)).((let H6 \def (eq_ind T (THead (Flat Appl)
+v1 (THead (Bind b) u0 t0)) (\lambda (e: T).(match e in T return (\lambda (_:
+T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False |
+(THead k _ _) \Rightarrow (match k in K return (\lambda (_: K).Prop) with
+[(Bind _) \Rightarrow False | (Flat _) \Rightarrow True])])) I (THead (Bind
+Void) u1 t1) H4) in (False_ind ((eq T (THead (Bind b) u2 (THead (Flat Appl)
+(lift (S O) O v2) t2)) x) \to ((not (eq B b Abst)) \to ((pr0 v1 v2) \to ((pr0
+u0 u2) \to ((pr0 t0 t2) \to (or (ex3_2 T T (\lambda (u3: T).(\lambda (t3:
+T).(eq T x (THead (Bind Void) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0
+u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1 (lift (S O)
+O x)))))))) H6)) H5 H0 H1 H2 H3))) | (pr0_delta u0 u2 H0 t0 t2 H1 w H2)
+\Rightarrow (\lambda (H3: (eq T (THead (Bind Abbr) u0 t0) (THead (Bind Void)
+u1 t1))).(\lambda (H4: (eq T (THead (Bind Abbr) u2 w) x)).((let H5 \def
+(eq_ind T (THead (Bind Abbr) u0 t0) (\lambda (e: T).(match e in T return
+(\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _)
+\Rightarrow False | (THead k _ _) \Rightarrow (match k in K return (\lambda
+(_: K).Prop) with [(Bind b) \Rightarrow (match b in B return (\lambda (_:
+B).Prop) with [Abbr \Rightarrow True | Abst \Rightarrow False | Void
+\Rightarrow False]) | (Flat _) \Rightarrow False])])) I (THead (Bind Void) u1
+t1) H3) in (False_ind ((eq T (THead (Bind Abbr) u2 w) x) \to ((pr0 u0 u2) \to
+((pr0 t0 t2) \to ((subst0 O u2 t2 w) \to (or (ex3_2 T T (\lambda (u3:
+T).(\lambda (t3: T).(eq T x (THead (Bind Void) u3 t3)))) (\lambda (u3:
+T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1
+t3)))) (pr0 t1 (lift (S O) O x))))))) H5)) H4 H0 H1 H2))) | (pr0_zeta b H0 t0
+t2 H1 u) \Rightarrow (\lambda (H2: (eq T (THead (Bind b) u (lift (S O) O t0))
+(THead (Bind Void) u1 t1))).(\lambda (H3: (eq T t2 x)).((let H4 \def (f_equal
+T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _)
+\Rightarrow ((let rec lref_map (f: ((nat \to nat))) (d: nat) (t: T) on t: T
+\def (match t with [(TSort n) \Rightarrow (TSort n) | (TLRef i) \Rightarrow
+(TLRef (match (blt i d) with [true \Rightarrow i | false \Rightarrow (f i)]))
+| (THead k u0 t3) \Rightarrow (THead k (lref_map f d u0) (lref_map f (s k d)
+t3))]) in lref_map) (\lambda (x0: nat).(plus x0 (S O))) O t0) | (TLRef _)
+\Rightarrow ((let rec lref_map (f: ((nat \to nat))) (d: nat) (t: T) on t: T
+\def (match t with [(TSort n) \Rightarrow (TSort n) | (TLRef i) \Rightarrow
+(TLRef (match (blt i d) with [true \Rightarrow i | false \Rightarrow (f i)]))
+| (THead k u0 t3) \Rightarrow (THead k (lref_map f d u0) (lref_map f (s k d)
+t3))]) in lref_map) (\lambda (x0: nat).(plus x0 (S O))) O t0) | (THead _ _ t)
+\Rightarrow t])) (THead (Bind b) u (lift (S O) O t0)) (THead (Bind Void) u1
+t1) H2) in ((let H5 \def (f_equal T T (\lambda (e: T).(match e in T return
+(\lambda (_: T).T) with [(TSort _) \Rightarrow u | (TLRef _) \Rightarrow u |
+(THead _ t _) \Rightarrow t])) (THead (Bind b) u (lift (S O) O t0)) (THead
+(Bind Void) u1 t1) H2) in ((let H6 \def (f_equal T B (\lambda (e: T).(match e
+in T return (\lambda (_: T).B) with [(TSort _) \Rightarrow b | (TLRef _)
+\Rightarrow b | (THead k _ _) \Rightarrow (match k in K return (\lambda (_:
+K).B) with [(Bind b0) \Rightarrow b0 | (Flat _) \Rightarrow b])])) (THead
+(Bind b) u (lift (S O) O t0)) (THead (Bind Void) u1 t1) H2) in (eq_ind B Void
+(\lambda (b0: B).((eq T u u1) \to ((eq T (lift (S O) O t0) t1) \to ((eq T t2
+x) \to ((not (eq B b0 Abst)) \to ((pr0 t0 t2) \to (or (ex3_2 T T (\lambda
+(u2: T).(\lambda (t3: T).(eq T x (THead (Bind Void) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1
+t3)))) (pr0 t1 (lift (S O) O x))))))))) (\lambda (H7: (eq T u u1)).(eq_ind T
+u1 (\lambda (_: T).((eq T (lift (S O) O t0) t1) \to ((eq T t2 x) \to ((not
+(eq B Void Abst)) \to ((pr0 t0 t2) \to (or (ex3_2 T T (\lambda (u2:
+T).(\lambda (t3: T).(eq T x (THead (Bind Void) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1
+t3)))) (pr0 t1 (lift (S O) O x)))))))) (\lambda (H8: (eq T (lift (S O) O t0)
+t1)).(eq_ind T (lift (S O) O t0) (\lambda (t: T).((eq T t2 x) \to ((not (eq B
+Void Abst)) \to ((pr0 t0 t2) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda
+(t3: T).(eq T x (THead (Bind Void) u2 t3)))) (\lambda (u2: T).(\lambda (_:
+T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t t3)))) (pr0 t (lift
+(S O) O x))))))) (\lambda (H9: (eq T t2 x)).(eq_ind T x (\lambda (t: T).((not
+(eq B Void Abst)) \to ((pr0 t0 t) \to (or (ex3_2 T T (\lambda (u2:
+T).(\lambda (t3: T).(eq T x (THead (Bind Void) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 (lift
+(S O) O t0) t3)))) (pr0 (lift (S O) O t0) (lift (S O) O x)))))) (\lambda (_:
+(not (eq B Void Abst))).(\lambda (H11: (pr0 t0 x)).(or_intror (ex3_2 T T
+(\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Bind Void) u2 t3))))
+(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3:
+T).(pr0 (lift (S O) O t0) t3)))) (pr0 (lift (S O) O t0) (lift (S O) O x))
+(pr0_lift t0 x H11 (S O) O)))) t2 (sym_eq T t2 x H9))) t1 H8)) u (sym_eq T u
+u1 H7))) b (sym_eq B b Void H6))) H5)) H4)) H3 H0 H1))) | (pr0_epsilon t0 t2
+H0 u) \Rightarrow (\lambda (H1: (eq T (THead (Flat Cast) u t0) (THead (Bind
+Void) u1 t1))).(\lambda (H2: (eq T t2 x)).((let H3 \def (eq_ind T (THead
+(Flat Cast) u t0) (\lambda (e: T).(match e in T return (\lambda (_: T).Prop)
+with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k _
+_) \Rightarrow (match k in K return (\lambda (_: K).Prop) with [(Bind _)
+\Rightarrow False | (Flat _) \Rightarrow True])])) I (THead (Bind Void) u1
+t1) H1) in (False_ind ((eq T t2 x) \to ((pr0 t0 t2) \to (or (ex3_2 T T
+(\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Bind Void) u2 t3))))
+(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3:
+T).(pr0 t1 t3)))) (pr0 t1 (lift (S O) O x))))) H3)) H2 H0)))]) in (H0
+(refl_equal T (THead (Bind Void) u1 t1)) (refl_equal T x)))))).
-axiom pr0_gen_lift:
+theorem pr0_gen_lift:
\forall (t1: T).(\forall (x: T).(\forall (h: nat).(\forall (d: nat).((pr0
(lift h d t1) x) \to (ex2 T (\lambda (t2: T).(eq T x (lift h d t2))) (\lambda
(t2: T).(pr0 t1 t2)))))))
-.
+\def
+ \lambda (t1: T).(\lambda (x: T).(\lambda (h: nat).(\lambda (d: nat).(\lambda
+(H: (pr0 (lift h d t1) x)).(insert_eq T (lift h d t1) (\lambda (t: T).(pr0 t
+x)) (ex2 T (\lambda (t2: T).(eq T x (lift h d t2))) (\lambda (t2: T).(pr0 t1
+t2))) (\lambda (y: T).(\lambda (H0: (pr0 y x)).(unintro nat d (\lambda (n:
+nat).((eq T y (lift h n t1)) \to (ex2 T (\lambda (t2: T).(eq T x (lift h n
+t2))) (\lambda (t2: T).(pr0 t1 t2))))) (unintro T t1 (\lambda (t: T).(\forall
+(x0: nat).((eq T y (lift h x0 t)) \to (ex2 T (\lambda (t2: T).(eq T x (lift h
+x0 t2))) (\lambda (t2: T).(pr0 t t2)))))) (pr0_ind (\lambda (t: T).(\lambda
+(t0: T).(\forall (x0: T).(\forall (x1: nat).((eq T t (lift h x1 x0)) \to (ex2
+T (\lambda (t2: T).(eq T t0 (lift h x1 t2))) (\lambda (t2: T).(pr0 x0
+t2)))))))) (\lambda (t: T).(\lambda (x0: T).(\lambda (x1: nat).(\lambda (H1:
+(eq T t (lift h x1 x0))).(ex_intro2 T (\lambda (t2: T).(eq T t (lift h x1
+t2))) (\lambda (t2: T).(pr0 x0 t2)) x0 H1 (pr0_refl x0)))))) (\lambda (u1:
+T).(\lambda (u2: T).(\lambda (_: (pr0 u1 u2)).(\lambda (H2: ((\forall (x0:
+T).(\forall (x1: nat).((eq T u1 (lift h x1 x0)) \to (ex2 T (\lambda (t2:
+T).(eq T u2 (lift h x1 t2))) (\lambda (t2: T).(pr0 x0 t2)))))))).(\lambda
+(t2: T).(\lambda (t3: T).(\lambda (_: (pr0 t2 t3)).(\lambda (H4: ((\forall
+(x0: T).(\forall (x1: nat).((eq T t2 (lift h x1 x0)) \to (ex2 T (\lambda (t4:
+T).(eq T t3 (lift h x1 t4))) (\lambda (t4: T).(pr0 x0 t4)))))))).(\lambda (k:
+K).(\lambda (x0: T).(\lambda (x1: nat).(\lambda (H5: (eq T (THead k u1 t2)
+(lift h x1 x0))).(K_ind (\lambda (k0: K).((eq T (THead k0 u1 t2) (lift h x1
+x0)) \to (ex2 T (\lambda (t4: T).(eq T (THead k0 u2 t3) (lift h x1 t4)))
+(\lambda (t4: T).(pr0 x0 t4))))) (\lambda (b: B).(\lambda (H6: (eq T (THead
+(Bind b) u1 t2) (lift h x1 x0))).(ex3_2_ind T T (\lambda (y0: T).(\lambda (z:
+T).(eq T x0 (THead (Bind b) y0 z)))) (\lambda (y0: T).(\lambda (_: T).(eq T
+u1 (lift h x1 y0)))) (\lambda (_: T).(\lambda (z: T).(eq T t2 (lift h (S x1)
+z)))) (ex2 T (\lambda (t4: T).(eq T (THead (Bind b) u2 t3) (lift h x1 t4)))
+(\lambda (t4: T).(pr0 x0 t4))) (\lambda (x2: T).(\lambda (x3: T).(\lambda
+(H7: (eq T x0 (THead (Bind b) x2 x3))).(\lambda (H8: (eq T u1 (lift h x1
+x2))).(\lambda (H9: (eq T t2 (lift h (S x1) x3))).(eq_ind_r T (THead (Bind b)
+x2 x3) (\lambda (t: T).(ex2 T (\lambda (t4: T).(eq T (THead (Bind b) u2 t3)
+(lift h x1 t4))) (\lambda (t4: T).(pr0 t t4)))) (ex2_ind T (\lambda (t4:
+T).(eq T t3 (lift h (S x1) t4))) (\lambda (t4: T).(pr0 x3 t4)) (ex2 T
+(\lambda (t4: T).(eq T (THead (Bind b) u2 t3) (lift h x1 t4))) (\lambda (t4:
+T).(pr0 (THead (Bind b) x2 x3) t4))) (\lambda (x4: T).(\lambda (H_x: (eq T t3
+(lift h (S x1) x4))).(\lambda (H10: (pr0 x3 x4)).(eq_ind_r T (lift h (S x1)
+x4) (\lambda (t: T).(ex2 T (\lambda (t4: T).(eq T (THead (Bind b) u2 t) (lift
+h x1 t4))) (\lambda (t4: T).(pr0 (THead (Bind b) x2 x3) t4)))) (ex2_ind T
+(\lambda (t4: T).(eq T u2 (lift h x1 t4))) (\lambda (t4: T).(pr0 x2 t4)) (ex2
+T (\lambda (t4: T).(eq T (THead (Bind b) u2 (lift h (S x1) x4)) (lift h x1
+t4))) (\lambda (t4: T).(pr0 (THead (Bind b) x2 x3) t4))) (\lambda (x5:
+T).(\lambda (H_x0: (eq T u2 (lift h x1 x5))).(\lambda (H11: (pr0 x2
+x5)).(eq_ind_r T (lift h x1 x5) (\lambda (t: T).(ex2 T (\lambda (t4: T).(eq T
+(THead (Bind b) t (lift h (S x1) x4)) (lift h x1 t4))) (\lambda (t4: T).(pr0
+(THead (Bind b) x2 x3) t4)))) (ex_intro2 T (\lambda (t4: T).(eq T (THead
+(Bind b) (lift h x1 x5) (lift h (S x1) x4)) (lift h x1 t4))) (\lambda (t4:
+T).(pr0 (THead (Bind b) x2 x3) t4)) (THead (Bind b) x5 x4) (sym_eq T (lift h
+x1 (THead (Bind b) x5 x4)) (THead (Bind b) (lift h x1 x5) (lift h (S x1) x4))
+(lift_bind b x5 x4 h x1)) (pr0_comp x2 x5 H11 x3 x4 H10 (Bind b))) u2
+H_x0)))) (H2 x2 x1 H8)) t3 H_x)))) (H4 x3 (S x1) H9)) x0 H7))))))
+(lift_gen_bind b u1 t2 x0 h x1 H6)))) (\lambda (f: F).(\lambda (H6: (eq T
+(THead (Flat f) u1 t2) (lift h x1 x0))).(ex3_2_ind T T (\lambda (y0:
+T).(\lambda (z: T).(eq T x0 (THead (Flat f) y0 z)))) (\lambda (y0:
+T).(\lambda (_: T).(eq T u1 (lift h x1 y0)))) (\lambda (_: T).(\lambda (z:
+T).(eq T t2 (lift h x1 z)))) (ex2 T (\lambda (t4: T).(eq T (THead (Flat f) u2
+t3) (lift h x1 t4))) (\lambda (t4: T).(pr0 x0 t4))) (\lambda (x2: T).(\lambda
+(x3: T).(\lambda (H7: (eq T x0 (THead (Flat f) x2 x3))).(\lambda (H8: (eq T
+u1 (lift h x1 x2))).(\lambda (H9: (eq T t2 (lift h x1 x3))).(eq_ind_r T
+(THead (Flat f) x2 x3) (\lambda (t: T).(ex2 T (\lambda (t4: T).(eq T (THead
+(Flat f) u2 t3) (lift h x1 t4))) (\lambda (t4: T).(pr0 t t4)))) (ex2_ind T
+(\lambda (t4: T).(eq T t3 (lift h x1 t4))) (\lambda (t4: T).(pr0 x3 t4)) (ex2
+T (\lambda (t4: T).(eq T (THead (Flat f) u2 t3) (lift h x1 t4))) (\lambda
+(t4: T).(pr0 (THead (Flat f) x2 x3) t4))) (\lambda (x4: T).(\lambda (H_x: (eq
+T t3 (lift h x1 x4))).(\lambda (H10: (pr0 x3 x4)).(eq_ind_r T (lift h x1 x4)
+(\lambda (t: T).(ex2 T (\lambda (t4: T).(eq T (THead (Flat f) u2 t) (lift h
+x1 t4))) (\lambda (t4: T).(pr0 (THead (Flat f) x2 x3) t4)))) (ex2_ind T
+(\lambda (t4: T).(eq T u2 (lift h x1 t4))) (\lambda (t4: T).(pr0 x2 t4)) (ex2
+T (\lambda (t4: T).(eq T (THead (Flat f) u2 (lift h x1 x4)) (lift h x1 t4)))
+(\lambda (t4: T).(pr0 (THead (Flat f) x2 x3) t4))) (\lambda (x5: T).(\lambda
+(H_x0: (eq T u2 (lift h x1 x5))).(\lambda (H11: (pr0 x2 x5)).(eq_ind_r T
+(lift h x1 x5) (\lambda (t: T).(ex2 T (\lambda (t4: T).(eq T (THead (Flat f)
+t (lift h x1 x4)) (lift h x1 t4))) (\lambda (t4: T).(pr0 (THead (Flat f) x2
+x3) t4)))) (ex_intro2 T (\lambda (t4: T).(eq T (THead (Flat f) (lift h x1 x5)
+(lift h x1 x4)) (lift h x1 t4))) (\lambda (t4: T).(pr0 (THead (Flat f) x2 x3)
+t4)) (THead (Flat f) x5 x4) (sym_eq T (lift h x1 (THead (Flat f) x5 x4))
+(THead (Flat f) (lift h x1 x5) (lift h x1 x4)) (lift_flat f x5 x4 h x1))
+(pr0_comp x2 x5 H11 x3 x4 H10 (Flat f))) u2 H_x0)))) (H2 x2 x1 H8)) t3
+H_x)))) (H4 x3 x1 H9)) x0 H7)))))) (lift_gen_flat f u1 t2 x0 h x1 H6)))) k
+H5))))))))))))) (\lambda (u: T).(\lambda (v1: T).(\lambda (v2: T).(\lambda
+(_: (pr0 v1 v2)).(\lambda (H2: ((\forall (x0: T).(\forall (x1: nat).((eq T v1
+(lift h x1 x0)) \to (ex2 T (\lambda (t2: T).(eq T v2 (lift h x1 t2)))
+(\lambda (t2: T).(pr0 x0 t2)))))))).(\lambda (t2: T).(\lambda (t3:
+T).(\lambda (_: (pr0 t2 t3)).(\lambda (H4: ((\forall (x0: T).(\forall (x1:
+nat).((eq T t2 (lift h x1 x0)) \to (ex2 T (\lambda (t4: T).(eq T t3 (lift h
+x1 t4))) (\lambda (t4: T).(pr0 x0 t4)))))))).(\lambda (x0: T).(\lambda (x1:
+nat).(\lambda (H5: (eq T (THead (Flat Appl) v1 (THead (Bind Abst) u t2))
+(lift h x1 x0))).(ex3_2_ind T T (\lambda (y0: T).(\lambda (z: T).(eq T x0
+(THead (Flat Appl) y0 z)))) (\lambda (y0: T).(\lambda (_: T).(eq T v1 (lift h
+x1 y0)))) (\lambda (_: T).(\lambda (z: T).(eq T (THead (Bind Abst) u t2)
+(lift h x1 z)))) (ex2 T (\lambda (t4: T).(eq T (THead (Bind Abbr) v2 t3)
+(lift h x1 t4))) (\lambda (t4: T).(pr0 x0 t4))) (\lambda (x2: T).(\lambda
+(x3: T).(\lambda (H6: (eq T x0 (THead (Flat Appl) x2 x3))).(\lambda (H7: (eq
+T v1 (lift h x1 x2))).(\lambda (H8: (eq T (THead (Bind Abst) u t2) (lift h x1
+x3))).(eq_ind_r T (THead (Flat Appl) x2 x3) (\lambda (t: T).(ex2 T (\lambda
+(t4: T).(eq T (THead (Bind Abbr) v2 t3) (lift h x1 t4))) (\lambda (t4:
+T).(pr0 t t4)))) (ex3_2_ind T T (\lambda (y0: T).(\lambda (z: T).(eq T x3
+(THead (Bind Abst) y0 z)))) (\lambda (y0: T).(\lambda (_: T).(eq T u (lift h
+x1 y0)))) (\lambda (_: T).(\lambda (z: T).(eq T t2 (lift h (S x1) z)))) (ex2
+T (\lambda (t4: T).(eq T (THead (Bind Abbr) v2 t3) (lift h x1 t4))) (\lambda
+(t4: T).(pr0 (THead (Flat Appl) x2 x3) t4))) (\lambda (x4: T).(\lambda (x5:
+T).(\lambda (H9: (eq T x3 (THead (Bind Abst) x4 x5))).(\lambda (_: (eq T u
+(lift h x1 x4))).(\lambda (H11: (eq T t2 (lift h (S x1) x5))).(eq_ind_r T
+(THead (Bind Abst) x4 x5) (\lambda (t: T).(ex2 T (\lambda (t4: T).(eq T
+(THead (Bind Abbr) v2 t3) (lift h x1 t4))) (\lambda (t4: T).(pr0 (THead (Flat
+Appl) x2 t) t4)))) (ex2_ind T (\lambda (t4: T).(eq T t3 (lift h (S x1) t4)))
+(\lambda (t4: T).(pr0 x5 t4)) (ex2 T (\lambda (t4: T).(eq T (THead (Bind
+Abbr) v2 t3) (lift h x1 t4))) (\lambda (t4: T).(pr0 (THead (Flat Appl) x2
+(THead (Bind Abst) x4 x5)) t4))) (\lambda (x6: T).(\lambda (H_x: (eq T t3
+(lift h (S x1) x6))).(\lambda (H12: (pr0 x5 x6)).(eq_ind_r T (lift h (S x1)
+x6) (\lambda (t: T).(ex2 T (\lambda (t4: T).(eq T (THead (Bind Abbr) v2 t)
+(lift h x1 t4))) (\lambda (t4: T).(pr0 (THead (Flat Appl) x2 (THead (Bind
+Abst) x4 x5)) t4)))) (ex2_ind T (\lambda (t4: T).(eq T v2 (lift h x1 t4)))
+(\lambda (t4: T).(pr0 x2 t4)) (ex2 T (\lambda (t4: T).(eq T (THead (Bind
+Abbr) v2 (lift h (S x1) x6)) (lift h x1 t4))) (\lambda (t4: T).(pr0 (THead
+(Flat Appl) x2 (THead (Bind Abst) x4 x5)) t4))) (\lambda (x7: T).(\lambda
+(H_x0: (eq T v2 (lift h x1 x7))).(\lambda (H13: (pr0 x2 x7)).(eq_ind_r T
+(lift h x1 x7) (\lambda (t: T).(ex2 T (\lambda (t4: T).(eq T (THead (Bind
+Abbr) t (lift h (S x1) x6)) (lift h x1 t4))) (\lambda (t4: T).(pr0 (THead
+(Flat Appl) x2 (THead (Bind Abst) x4 x5)) t4)))) (ex_intro2 T (\lambda (t4:
+T).(eq T (THead (Bind Abbr) (lift h x1 x7) (lift h (S x1) x6)) (lift h x1
+t4))) (\lambda (t4: T).(pr0 (THead (Flat Appl) x2 (THead (Bind Abst) x4 x5))
+t4)) (THead (Bind Abbr) x7 x6) (sym_eq T (lift h x1 (THead (Bind Abbr) x7
+x6)) (THead (Bind Abbr) (lift h x1 x7) (lift h (S x1) x6)) (lift_bind Abbr x7
+x6 h x1)) (pr0_beta x4 x2 x7 H13 x5 x6 H12)) v2 H_x0)))) (H2 x2 x1 H7)) t3
+H_x)))) (H4 x5 (S x1) H11)) x3 H9)))))) (lift_gen_bind Abst u t2 x3 h x1 H8))
+x0 H6)))))) (lift_gen_flat Appl v1 (THead (Bind Abst) u t2) x0 h x1
+H5)))))))))))))) (\lambda (b: B).(\lambda (H1: (not (eq B b Abst))).(\lambda
+(v1: T).(\lambda (v2: T).(\lambda (_: (pr0 v1 v2)).(\lambda (H3: ((\forall
+(x0: T).(\forall (x1: nat).((eq T v1 (lift h x1 x0)) \to (ex2 T (\lambda (t2:
+T).(eq T v2 (lift h x1 t2))) (\lambda (t2: T).(pr0 x0 t2)))))))).(\lambda
+(u1: T).(\lambda (u2: T).(\lambda (_: (pr0 u1 u2)).(\lambda (H5: ((\forall
+(x0: T).(\forall (x1: nat).((eq T u1 (lift h x1 x0)) \to (ex2 T (\lambda (t2:
+T).(eq T u2 (lift h x1 t2))) (\lambda (t2: T).(pr0 x0 t2)))))))).(\lambda
+(t2: T).(\lambda (t3: T).(\lambda (_: (pr0 t2 t3)).(\lambda (H7: ((\forall
+(x0: T).(\forall (x1: nat).((eq T t2 (lift h x1 x0)) \to (ex2 T (\lambda (t4:
+T).(eq T t3 (lift h x1 t4))) (\lambda (t4: T).(pr0 x0 t4)))))))).(\lambda
+(x0: T).(\lambda (x1: nat).(\lambda (H8: (eq T (THead (Flat Appl) v1 (THead
+(Bind b) u1 t2)) (lift h x1 x0))).(ex3_2_ind T T (\lambda (y0: T).(\lambda
+(z: T).(eq T x0 (THead (Flat Appl) y0 z)))) (\lambda (y0: T).(\lambda (_:
+T).(eq T v1 (lift h x1 y0)))) (\lambda (_: T).(\lambda (z: T).(eq T (THead
+(Bind b) u1 t2) (lift h x1 z)))) (ex2 T (\lambda (t4: T).(eq T (THead (Bind
+b) u2 (THead (Flat Appl) (lift (S O) O v2) t3)) (lift h x1 t4))) (\lambda
+(t4: T).(pr0 x0 t4))) (\lambda (x2: T).(\lambda (x3: T).(\lambda (H9: (eq T
+x0 (THead (Flat Appl) x2 x3))).(\lambda (H10: (eq T v1 (lift h x1
+x2))).(\lambda (H11: (eq T (THead (Bind b) u1 t2) (lift h x1 x3))).(eq_ind_r
+T (THead (Flat Appl) x2 x3) (\lambda (t: T).(ex2 T (\lambda (t4: T).(eq T
+(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t3)) (lift h x1 t4)))
+(\lambda (t4: T).(pr0 t t4)))) (ex3_2_ind T T (\lambda (y0: T).(\lambda (z:
+T).(eq T x3 (THead (Bind b) y0 z)))) (\lambda (y0: T).(\lambda (_: T).(eq T
+u1 (lift h x1 y0)))) (\lambda (_: T).(\lambda (z: T).(eq T t2 (lift h (S x1)
+z)))) (ex2 T (\lambda (t4: T).(eq T (THead (Bind b) u2 (THead (Flat Appl)
+(lift (S O) O v2) t3)) (lift h x1 t4))) (\lambda (t4: T).(pr0 (THead (Flat
+Appl) x2 x3) t4))) (\lambda (x4: T).(\lambda (x5: T).(\lambda (H12: (eq T x3
+(THead (Bind b) x4 x5))).(\lambda (H13: (eq T u1 (lift h x1 x4))).(\lambda
+(H14: (eq T t2 (lift h (S x1) x5))).(eq_ind_r T (THead (Bind b) x4 x5)
+(\lambda (t: T).(ex2 T (\lambda (t4: T).(eq T (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t3)) (lift h x1 t4))) (\lambda (t4: T).(pr0 (THead
+(Flat Appl) x2 t) t4)))) (ex2_ind T (\lambda (t4: T).(eq T t3 (lift h (S x1)
+t4))) (\lambda (t4: T).(pr0 x5 t4)) (ex2 T (\lambda (t4: T).(eq T (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t3)) (lift h x1 t4)))
+(\lambda (t4: T).(pr0 (THead (Flat Appl) x2 (THead (Bind b) x4 x5)) t4)))
+(\lambda (x6: T).(\lambda (H_x: (eq T t3 (lift h (S x1) x6))).(\lambda (H15:
+(pr0 x5 x6)).(eq_ind_r T (lift h (S x1) x6) (\lambda (t: T).(ex2 T (\lambda
+(t4: T).(eq T (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t))
+(lift h x1 t4))) (\lambda (t4: T).(pr0 (THead (Flat Appl) x2 (THead (Bind b)
+x4 x5)) t4)))) (ex2_ind T (\lambda (t4: T).(eq T u2 (lift h x1 t4))) (\lambda
+(t4: T).(pr0 x4 t4)) (ex2 T (\lambda (t4: T).(eq T (THead (Bind b) u2 (THead
+(Flat Appl) (lift (S O) O v2) (lift h (S x1) x6))) (lift h x1 t4))) (\lambda
+(t4: T).(pr0 (THead (Flat Appl) x2 (THead (Bind b) x4 x5)) t4))) (\lambda
+(x7: T).(\lambda (H_x0: (eq T u2 (lift h x1 x7))).(\lambda (H16: (pr0 x4
+x7)).(eq_ind_r T (lift h x1 x7) (\lambda (t: T).(ex2 T (\lambda (t4: T).(eq T
+(THead (Bind b) t (THead (Flat Appl) (lift (S O) O v2) (lift h (S x1) x6)))
+(lift h x1 t4))) (\lambda (t4: T).(pr0 (THead (Flat Appl) x2 (THead (Bind b)
+x4 x5)) t4)))) (ex2_ind T (\lambda (t4: T).(eq T v2 (lift h x1 t4))) (\lambda
+(t4: T).(pr0 x2 t4)) (ex2 T (\lambda (t4: T).(eq T (THead (Bind b) (lift h x1
+x7) (THead (Flat Appl) (lift (S O) O v2) (lift h (S x1) x6))) (lift h x1
+t4))) (\lambda (t4: T).(pr0 (THead (Flat Appl) x2 (THead (Bind b) x4 x5))
+t4))) (\lambda (x8: T).(\lambda (H_x1: (eq T v2 (lift h x1 x8))).(\lambda
+(H17: (pr0 x2 x8)).(eq_ind_r T (lift h x1 x8) (\lambda (t: T).(ex2 T (\lambda
+(t4: T).(eq T (THead (Bind b) (lift h x1 x7) (THead (Flat Appl) (lift (S O) O
+t) (lift h (S x1) x6))) (lift h x1 t4))) (\lambda (t4: T).(pr0 (THead (Flat
+Appl) x2 (THead (Bind b) x4 x5)) t4)))) (eq_ind T (lift h (plus (S O) x1)
+(lift (S O) O x8)) (\lambda (t: T).(ex2 T (\lambda (t4: T).(eq T (THead (Bind
+b) (lift h x1 x7) (THead (Flat Appl) t (lift h (S x1) x6))) (lift h x1 t4)))
+(\lambda (t4: T).(pr0 (THead (Flat Appl) x2 (THead (Bind b) x4 x5)) t4))))
+(eq_ind T (lift h (S x1) (THead (Flat Appl) (lift (S O) O x8) x6)) (\lambda
+(t: T).(ex2 T (\lambda (t4: T).(eq T (THead (Bind b) (lift h x1 x7) t) (lift
+h x1 t4))) (\lambda (t4: T).(pr0 (THead (Flat Appl) x2 (THead (Bind b) x4
+x5)) t4)))) (ex_intro2 T (\lambda (t4: T).(eq T (THead (Bind b) (lift h x1
+x7) (lift h (S x1) (THead (Flat Appl) (lift (S O) O x8) x6))) (lift h x1
+t4))) (\lambda (t4: T).(pr0 (THead (Flat Appl) x2 (THead (Bind b) x4 x5))
+t4)) (THead (Bind b) x7 (THead (Flat Appl) (lift (S O) O x8) x6)) (sym_eq T
+(lift h x1 (THead (Bind b) x7 (THead (Flat Appl) (lift (S O) O x8) x6)))
+(THead (Bind b) (lift h x1 x7) (lift h (S x1) (THead (Flat Appl) (lift (S O)
+O x8) x6))) (lift_bind b x7 (THead (Flat Appl) (lift (S O) O x8) x6) h x1))
+(pr0_upsilon b H1 x2 x8 H17 x4 x7 H16 x5 x6 H15)) (THead (Flat Appl) (lift h
+(S x1) (lift (S O) O x8)) (lift h (S x1) x6)) (lift_flat Appl (lift (S O) O
+x8) x6 h (S x1))) (lift (S O) O (lift h x1 x8)) (lift_d x8 h (S O) x1 O
+(le_O_n x1))) v2 H_x1)))) (H3 x2 x1 H10)) u2 H_x0)))) (H5 x4 x1 H13)) t3
+H_x)))) (H7 x5 (S x1) H14)) x3 H12)))))) (lift_gen_bind b u1 t2 x3 h x1 H11))
+x0 H9)))))) (lift_gen_flat Appl v1 (THead (Bind b) u1 t2) x0 h x1
+H8))))))))))))))))))) (\lambda (u1: T).(\lambda (u2: T).(\lambda (_: (pr0 u1
+u2)).(\lambda (H2: ((\forall (x0: T).(\forall (x1: nat).((eq T u1 (lift h x1
+x0)) \to (ex2 T (\lambda (t2: T).(eq T u2 (lift h x1 t2))) (\lambda (t2:
+T).(pr0 x0 t2)))))))).(\lambda (t2: T).(\lambda (t3: T).(\lambda (_: (pr0 t2
+t3)).(\lambda (H4: ((\forall (x0: T).(\forall (x1: nat).((eq T t2 (lift h x1
+x0)) \to (ex2 T (\lambda (t4: T).(eq T t3 (lift h x1 t4))) (\lambda (t4:
+T).(pr0 x0 t4)))))))).(\lambda (w: T).(\lambda (H5: (subst0 O u2 t3
+w)).(\lambda (x0: T).(\lambda (x1: nat).(\lambda (H6: (eq T (THead (Bind
+Abbr) u1 t2) (lift h x1 x0))).(ex3_2_ind T T (\lambda (y0: T).(\lambda (z:
+T).(eq T x0 (THead (Bind Abbr) y0 z)))) (\lambda (y0: T).(\lambda (_: T).(eq
+T u1 (lift h x1 y0)))) (\lambda (_: T).(\lambda (z: T).(eq T t2 (lift h (S
+x1) z)))) (ex2 T (\lambda (t4: T).(eq T (THead (Bind Abbr) u2 w) (lift h x1
+t4))) (\lambda (t4: T).(pr0 x0 t4))) (\lambda (x2: T).(\lambda (x3:
+T).(\lambda (H7: (eq T x0 (THead (Bind Abbr) x2 x3))).(\lambda (H8: (eq T u1
+(lift h x1 x2))).(\lambda (H9: (eq T t2 (lift h (S x1) x3))).(eq_ind_r T
+(THead (Bind Abbr) x2 x3) (\lambda (t: T).(ex2 T (\lambda (t4: T).(eq T
+(THead (Bind Abbr) u2 w) (lift h x1 t4))) (\lambda (t4: T).(pr0 t t4))))
+(ex2_ind T (\lambda (t4: T).(eq T t3 (lift h (S x1) t4))) (\lambda (t4:
+T).(pr0 x3 t4)) (ex2 T (\lambda (t4: T).(eq T (THead (Bind Abbr) u2 w) (lift
+h x1 t4))) (\lambda (t4: T).(pr0 (THead (Bind Abbr) x2 x3) t4))) (\lambda
+(x4: T).(\lambda (H_x: (eq T t3 (lift h (S x1) x4))).(\lambda (H10: (pr0 x3
+x4)).(let H11 \def (eq_ind T t3 (\lambda (t: T).(subst0 O u2 t w)) H5 (lift h
+(S x1) x4) H_x) in (ex2_ind T (\lambda (t4: T).(eq T u2 (lift h x1 t4)))
+(\lambda (t4: T).(pr0 x2 t4)) (ex2 T (\lambda (t4: T).(eq T (THead (Bind
+Abbr) u2 w) (lift h x1 t4))) (\lambda (t4: T).(pr0 (THead (Bind Abbr) x2 x3)
+t4))) (\lambda (x5: T).(\lambda (H_x0: (eq T u2 (lift h x1 x5))).(\lambda
+(H12: (pr0 x2 x5)).(eq_ind_r T (lift h x1 x5) (\lambda (t: T).(ex2 T (\lambda
+(t4: T).(eq T (THead (Bind Abbr) t w) (lift h x1 t4))) (\lambda (t4: T).(pr0
+(THead (Bind Abbr) x2 x3) t4)))) (let H13 \def (eq_ind T u2 (\lambda (t:
+T).(subst0 O t (lift h (S x1) x4) w)) H11 (lift h x1 x5) H_x0) in (let H14
+\def (refl_equal nat (S (plus O x1))) in (let H15 \def (eq_ind nat (S x1)
+(\lambda (n: nat).(subst0 O (lift h x1 x5) (lift h n x4) w)) H13 (S (plus O
+x1)) H14) in (ex2_ind T (\lambda (t4: T).(eq T w (lift h (S (plus O x1))
+t4))) (\lambda (t4: T).(subst0 O x5 x4 t4)) (ex2 T (\lambda (t4: T).(eq T
+(THead (Bind Abbr) (lift h x1 x5) w) (lift h x1 t4))) (\lambda (t4: T).(pr0
+(THead (Bind Abbr) x2 x3) t4))) (\lambda (x6: T).(\lambda (H16: (eq T w (lift
+h (S (plus O x1)) x6))).(\lambda (H17: (subst0 O x5 x4 x6)).(eq_ind_r T (lift
+h (S (plus O x1)) x6) (\lambda (t: T).(ex2 T (\lambda (t4: T).(eq T (THead
+(Bind Abbr) (lift h x1 x5) t) (lift h x1 t4))) (\lambda (t4: T).(pr0 (THead
+(Bind Abbr) x2 x3) t4)))) (ex_intro2 T (\lambda (t4: T).(eq T (THead (Bind
+Abbr) (lift h x1 x5) (lift h (S (plus O x1)) x6)) (lift h x1 t4))) (\lambda
+(t4: T).(pr0 (THead (Bind Abbr) x2 x3) t4)) (THead (Bind Abbr) x5 x6) (sym_eq
+T (lift h x1 (THead (Bind Abbr) x5 x6)) (THead (Bind Abbr) (lift h x1 x5)
+(lift h (S (plus O x1)) x6)) (lift_bind Abbr x5 x6 h (plus O x1))) (pr0_delta
+x2 x5 H12 x3 x4 H10 x6 H17)) w H16)))) (subst0_gen_lift_lt x5 x4 w O h x1
+H15))))) u2 H_x0)))) (H2 x2 x1 H8)))))) (H4 x3 (S x1) H9)) x0 H7))))))
+(lift_gen_bind Abbr u1 t2 x0 h x1 H6))))))))))))))) (\lambda (b: B).(\lambda
+(H1: (not (eq B b Abst))).(\lambda (t2: T).(\lambda (t3: T).(\lambda (_: (pr0
+t2 t3)).(\lambda (H3: ((\forall (x0: T).(\forall (x1: nat).((eq T t2 (lift h
+x1 x0)) \to (ex2 T (\lambda (t4: T).(eq T t3 (lift h x1 t4))) (\lambda (t4:
+T).(pr0 x0 t4)))))))).(\lambda (u: T).(\lambda (x0: T).(\lambda (x1:
+nat).(\lambda (H4: (eq T (THead (Bind b) u (lift (S O) O t2)) (lift h x1
+x0))).(ex3_2_ind T T (\lambda (y0: T).(\lambda (z: T).(eq T x0 (THead (Bind
+b) y0 z)))) (\lambda (y0: T).(\lambda (_: T).(eq T u (lift h x1 y0))))
+(\lambda (_: T).(\lambda (z: T).(eq T (lift (S O) O t2) (lift h (S x1) z))))
+(ex2 T (\lambda (t4: T).(eq T t3 (lift h x1 t4))) (\lambda (t4: T).(pr0 x0
+t4))) (\lambda (x2: T).(\lambda (x3: T).(\lambda (H5: (eq T x0 (THead (Bind
+b) x2 x3))).(\lambda (_: (eq T u (lift h x1 x2))).(\lambda (H7: (eq T (lift
+(S O) O t2) (lift h (S x1) x3))).(eq_ind_r T (THead (Bind b) x2 x3) (\lambda
+(t: T).(ex2 T (\lambda (t4: T).(eq T t3 (lift h x1 t4))) (\lambda (t4:
+T).(pr0 t t4)))) (let H8 \def (eq_ind_r nat (plus (S O) x1) (\lambda (n:
+nat).(eq nat (S x1) n)) (refl_equal nat (plus (S O) x1)) (plus x1 (S O))
+(plus_comm x1 (S O))) in (let H9 \def (eq_ind nat (S x1) (\lambda (n:
+nat).(eq T (lift (S O) O t2) (lift h n x3))) H7 (plus x1 (S O)) H8) in
+(ex2_ind T (\lambda (t4: T).(eq T x3 (lift (S O) O t4))) (\lambda (t4: T).(eq
+T t2 (lift h x1 t4))) (ex2 T (\lambda (t4: T).(eq T t3 (lift h x1 t4)))
+(\lambda (t4: T).(pr0 (THead (Bind b) x2 x3) t4))) (\lambda (x4: T).(\lambda
+(H10: (eq T x3 (lift (S O) O x4))).(\lambda (H11: (eq T t2 (lift h x1
+x4))).(eq_ind_r T (lift (S O) O x4) (\lambda (t: T).(ex2 T (\lambda (t4:
+T).(eq T t3 (lift h x1 t4))) (\lambda (t4: T).(pr0 (THead (Bind b) x2 t)
+t4)))) (ex2_ind T (\lambda (t4: T).(eq T t3 (lift h x1 t4))) (\lambda (t4:
+T).(pr0 x4 t4)) (ex2 T (\lambda (t4: T).(eq T t3 (lift h x1 t4))) (\lambda
+(t4: T).(pr0 (THead (Bind b) x2 (lift (S O) O x4)) t4))) (\lambda (x5:
+T).(\lambda (H_x: (eq T t3 (lift h x1 x5))).(\lambda (H12: (pr0 x4
+x5)).(eq_ind_r T (lift h x1 x5) (\lambda (t: T).(ex2 T (\lambda (t4: T).(eq T
+t (lift h x1 t4))) (\lambda (t4: T).(pr0 (THead (Bind b) x2 (lift (S O) O
+x4)) t4)))) (ex_intro2 T (\lambda (t4: T).(eq T (lift h x1 x5) (lift h x1
+t4))) (\lambda (t4: T).(pr0 (THead (Bind b) x2 (lift (S O) O x4)) t4)) x5
+(refl_equal T (lift h x1 x5)) (pr0_zeta b H1 x4 x5 H12 x2)) t3 H_x)))) (H3 x4
+x1 H11)) x3 H10)))) (lift_gen_lift t2 x3 (S O) h O x1 (le_O_n x1) H9)))) x0
+H5)))))) (lift_gen_bind b u (lift (S O) O t2) x0 h x1 H4)))))))))))) (\lambda
+(t2: T).(\lambda (t3: T).(\lambda (_: (pr0 t2 t3)).(\lambda (H2: ((\forall
+(x0: T).(\forall (x1: nat).((eq T t2 (lift h x1 x0)) \to (ex2 T (\lambda (t4:
+T).(eq T t3 (lift h x1 t4))) (\lambda (t4: T).(pr0 x0 t4)))))))).(\lambda (u:
+T).(\lambda (x0: T).(\lambda (x1: nat).(\lambda (H3: (eq T (THead (Flat Cast)
+u t2) (lift h x1 x0))).(ex3_2_ind T T (\lambda (y0: T).(\lambda (z: T).(eq T
+x0 (THead (Flat Cast) y0 z)))) (\lambda (y0: T).(\lambda (_: T).(eq T u (lift
+h x1 y0)))) (\lambda (_: T).(\lambda (z: T).(eq T t2 (lift h x1 z)))) (ex2 T
+(\lambda (t4: T).(eq T t3 (lift h x1 t4))) (\lambda (t4: T).(pr0 x0 t4)))
+(\lambda (x2: T).(\lambda (x3: T).(\lambda (H4: (eq T x0 (THead (Flat Cast)
+x2 x3))).(\lambda (_: (eq T u (lift h x1 x2))).(\lambda (H6: (eq T t2 (lift h
+x1 x3))).(eq_ind_r T (THead (Flat Cast) x2 x3) (\lambda (t: T).(ex2 T
+(\lambda (t4: T).(eq T t3 (lift h x1 t4))) (\lambda (t4: T).(pr0 t t4))))
+(ex2_ind T (\lambda (t4: T).(eq T t3 (lift h x1 t4))) (\lambda (t4: T).(pr0
+x3 t4)) (ex2 T (\lambda (t4: T).(eq T t3 (lift h x1 t4))) (\lambda (t4:
+T).(pr0 (THead (Flat Cast) x2 x3) t4))) (\lambda (x4: T).(\lambda (H_x: (eq T
+t3 (lift h x1 x4))).(\lambda (H7: (pr0 x3 x4)).(eq_ind_r T (lift h x1 x4)
+(\lambda (t: T).(ex2 T (\lambda (t4: T).(eq T t (lift h x1 t4))) (\lambda
+(t4: T).(pr0 (THead (Flat Cast) x2 x3) t4)))) (ex_intro2 T (\lambda (t4:
+T).(eq T (lift h x1 x4) (lift h x1 t4))) (\lambda (t4: T).(pr0 (THead (Flat
+Cast) x2 x3) t4)) x4 (refl_equal T (lift h x1 x4)) (pr0_epsilon x3 x4 H7 x2))
+t3 H_x)))) (H2 x3 x1 H6)) x0 H4)))))) (lift_gen_flat Cast u t2 x0 h x1
+H3)))))))))) y x H0))))) H))))).
include "lift/props.ma".
-axiom subst0_gen_sort:
+theorem subst0_inv_coq:
+ \forall (i: nat).(\forall (v: T).(\forall (t1: T).(\forall (t2: T).(\forall
+(P: ((nat \to (T \to (T \to (T \to Prop)))))).((((subst0 i v t1 t2) \to
+(\forall (v0: T).(\forall (i0: nat).((eq nat i0 i) \to ((eq T v0 v) \to ((eq
+T (TLRef i0) t1) \to ((eq T (lift (S i0) O v0) t2) \to (P i v t1 t2)))))))))
+\to ((((subst0 i v t1 t2) \to (\forall (v0: T).(\forall (u2: T).(\forall (u1:
+T).(\forall (i0: nat).(\forall (t: T).(\forall (k: K).((eq nat i0 i) \to ((eq
+T v0 v) \to ((eq T (THead k u1 t) t1) \to ((eq T (THead k u2 t) t2) \to
+((subst0 i0 v0 u1 u2) \to (P i v t1 t2)))))))))))))) \to ((((subst0 i v t1
+t2) \to (\forall (k: K).(\forall (v0: T).(\forall (t0: T).(\forall (t3:
+T).(\forall (i0: nat).(\forall (u: T).((eq nat i0 i) \to ((eq T v0 v) \to
+((eq T (THead k u t3) t1) \to ((eq T (THead k u t0) t2) \to ((subst0 (s k i0)
+v0 t3 t0) \to (P i v t1 t2)))))))))))))) \to ((((subst0 i v t1 t2) \to
+(\forall (v0: T).(\forall (u1: T).(\forall (u2: T).(\forall (i0:
+nat).(\forall (k: K).(\forall (t0: T).(\forall (t3: T).((eq nat i0 i) \to
+((eq T v0 v) \to ((eq T (THead k u1 t0) t1) \to ((eq T (THead k u2 t3) t2)
+\to ((subst0 i0 v0 u1 u2) \to ((subst0 (s k i0) v0 t0 t3) \to (P i v t1
+t2)))))))))))))))) \to ((subst0 i v t1 t2) \to (P i v t1 t2))))))))))
+\def
+ \lambda (i: nat).(\lambda (v: T).(\lambda (t1: T).(\lambda (t2: T).(\lambda
+(P: ((nat \to (T \to (T \to (T \to Prop)))))).(\lambda (H: (((subst0 i v t1
+t2) \to (\forall (v0: T).(\forall (i0: nat).((eq nat i0 i) \to ((eq T v0 v)
+\to ((eq T (TLRef i0) t1) \to ((eq T (lift (S i0) O v0) t2) \to (P i v t1
+t2)))))))))).(\lambda (H0: (((subst0 i v t1 t2) \to (\forall (v0: T).(\forall
+(u2: T).(\forall (u1: T).(\forall (i0: nat).(\forall (t: T).(\forall (k:
+K).((eq nat i0 i) \to ((eq T v0 v) \to ((eq T (THead k u1 t) t1) \to ((eq T
+(THead k u2 t) t2) \to ((subst0 i0 v0 u1 u2) \to (P i v t1
+t2))))))))))))))).(\lambda (H1: (((subst0 i v t1 t2) \to (\forall (k:
+K).(\forall (v0: T).(\forall (t0: T).(\forall (t3: T).(\forall (i0:
+nat).(\forall (u: T).((eq nat i0 i) \to ((eq T v0 v) \to ((eq T (THead k u
+t3) t1) \to ((eq T (THead k u t0) t2) \to ((subst0 (s k i0) v0 t3 t0) \to (P
+i v t1 t2))))))))))))))).(\lambda (H2: (((subst0 i v t1 t2) \to (\forall (v0:
+T).(\forall (u1: T).(\forall (u2: T).(\forall (i0: nat).(\forall (k:
+K).(\forall (t0: T).(\forall (t3: T).((eq nat i0 i) \to ((eq T v0 v) \to ((eq
+T (THead k u1 t0) t1) \to ((eq T (THead k u2 t3) t2) \to ((subst0 i0 v0 u1
+u2) \to ((subst0 (s k i0) v0 t0 t3) \to (P i v t1
+t2))))))))))))))))).(\lambda (H3: (subst0 i v t1 t2)).(let H4 \def (match H3
+in subst0 return (\lambda (n: nat).(\lambda (t: T).(\lambda (t0: T).(\lambda
+(t3: T).(\lambda (_: (subst0 n t t0 t3)).((eq nat n i) \to ((eq T t v) \to
+((eq T t0 t1) \to ((eq T t3 t2) \to (P i v t1 t2)))))))))) with [(subst0_lref
+v0 i0) \Rightarrow (\lambda (H4: (eq nat i0 i)).(\lambda (H5: (eq T v0
+v)).(\lambda (H6: (eq T (TLRef i0) t1)).(\lambda (H7: (eq T (lift (S i0) O
+v0) t2)).(H H3 v0 i0 H4 H5 H6 H7))))) | (subst0_fst v0 u2 u1 i0 H4 t k)
+\Rightarrow (\lambda (H5: (eq nat i0 i)).(\lambda (H6: (eq T v0 v)).(\lambda
+(H7: (eq T (THead k u1 t) t1)).(\lambda (H8: (eq T (THead k u2 t) t2)).(H0 H3
+v0 u2 u1 i0 t k H5 H6 H7 H8 H4))))) | (subst0_snd k v0 t0 t3 i0 H4 u)
+\Rightarrow (\lambda (H5: (eq nat i0 i)).(\lambda (H6: (eq T v0 v)).(\lambda
+(H7: (eq T (THead k u t3) t1)).(\lambda (H8: (eq T (THead k u t0) t2)).(H1 H3
+k v0 t0 t3 i0 u H5 H6 H7 H8 H4))))) | (subst0_both v0 u1 u2 i0 H4 k t0 t3 H5)
+\Rightarrow (\lambda (H6: (eq nat i0 i)).(\lambda (H7: (eq T v0 v)).(\lambda
+(H8: (eq T (THead k u1 t0) t1)).(\lambda (H9: (eq T (THead k u2 t3) t2)).(H2
+H3 v0 u1 u2 i0 k t0 t3 H6 H7 H8 H9 H4 H5)))))]) in (H4 (refl_equal nat i)
+(refl_equal T v) (refl_equal T t1) (refl_equal T t2)))))))))))).
+
+theorem subst0_gen_sort:
\forall (v: T).(\forall (x: T).(\forall (i: nat).(\forall (n: nat).((subst0
i v (TSort n) x) \to (\forall (P: Prop).P)))))
-.
+\def
+ \lambda (v: T).(\lambda (x: T).(\lambda (i: nat).(\lambda (n: nat).(\lambda
+(H: (subst0 i v (TSort n) x)).(\lambda (P: Prop).(subst0_inv_coq i v (TSort
+n) x (\lambda (_: nat).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).P))))
+(\lambda (H0: (subst0 i v (TSort n) x)).(\lambda (v0: T).(\lambda (i0:
+nat).(\lambda (H1: (eq nat i0 i)).(\lambda (H2: (eq T v0 v)).(\lambda (H3:
+(eq T (TLRef i0) (TSort n))).(\lambda (H4: (eq T (lift (S i0) O v0) x)).(let
+H5 \def (eq_ind nat i0 (\lambda (n0: nat).(eq T (lift (S n0) O v0) x)) H4 i
+H1) in (let H6 \def (eq_ind nat i0 (\lambda (n0: nat).(eq T (TLRef n0) (TSort
+n))) H3 i H1) in (let H7 \def (eq_ind T v0 (\lambda (t: T).(eq T (lift (S i)
+O t) x)) H5 v H2) in (let H8 \def (eq_ind_r T x (\lambda (t: T).(subst0 i v
+(TSort n) t)) H0 (lift (S i) O v) H7) in (let H9 \def (eq_ind_r T x (\lambda
+(t: T).(subst0 i v (TSort n) t)) H (lift (S i) O v) H7) in (let H10 \def
+(eq_ind T (TLRef i) (\lambda (ee: T).(match ee in T return (\lambda (_:
+T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow True |
+(THead _ _ _) \Rightarrow False])) I (TSort n) H6) in (False_ind P
+H10)))))))))))))) (\lambda (H0: (subst0 i v (TSort n) x)).(\lambda (v0:
+T).(\lambda (u2: T).(\lambda (u1: T).(\lambda (i0: nat).(\lambda (t:
+T).(\lambda (k: K).(\lambda (H1: (eq nat i0 i)).(\lambda (H2: (eq T v0
+v)).(\lambda (H3: (eq T (THead k u1 t) (TSort n))).(\lambda (H4: (eq T (THead
+k u2 t) x)).(\lambda (H5: (subst0 i0 v0 u1 u2)).(let H6 \def (eq_ind nat i0
+(\lambda (n0: nat).(subst0 n0 v0 u1 u2)) H5 i H1) in (let H7 \def (eq_ind T
+v0 (\lambda (t0: T).(subst0 i t0 u1 u2)) H6 v H2) in (let H8 \def (eq_ind_r T
+x (\lambda (t0: T).(subst0 i v (TSort n) t0)) H0 (THead k u2 t) H4) in (let
+H9 \def (eq_ind_r T x (\lambda (t0: T).(subst0 i v (TSort n) t0)) H (THead k
+u2 t) H4) in (let H10 \def (eq_ind T (THead k u1 t) (\lambda (ee: T).(match
+ee in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow False |
+(TLRef _) \Rightarrow False | (THead _ _ _) \Rightarrow True])) I (TSort n)
+H3) in (False_ind P H10)))))))))))))))))) (\lambda (H0: (subst0 i v (TSort n)
+x)).(\lambda (k: K).(\lambda (v0: T).(\lambda (t0: T).(\lambda (t3:
+T).(\lambda (i0: nat).(\lambda (u: T).(\lambda (H1: (eq nat i0 i)).(\lambda
+(H2: (eq T v0 v)).(\lambda (H3: (eq T (THead k u t3) (TSort n))).(\lambda
+(H4: (eq T (THead k u t0) x)).(\lambda (H5: (subst0 (s k i0) v0 t3 t0)).(let
+H6 \def (eq_ind nat i0 (\lambda (n0: nat).(subst0 (s k n0) v0 t3 t0)) H5 i
+H1) in (let H7 \def (eq_ind T v0 (\lambda (t: T).(subst0 (s k i) t t3 t0)) H6
+v H2) in (let H8 \def (eq_ind_r T x (\lambda (t: T).(subst0 i v (TSort n) t))
+H0 (THead k u t0) H4) in (let H9 \def (eq_ind_r T x (\lambda (t: T).(subst0 i
+v (TSort n) t)) H (THead k u t0) H4) in (let H10 \def (eq_ind T (THead k u
+t3) (\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) with [(TSort
+_) \Rightarrow False | (TLRef _) \Rightarrow False | (THead _ _ _)
+\Rightarrow True])) I (TSort n) H3) in (False_ind P H10))))))))))))))))))
+(\lambda (H0: (subst0 i v (TSort n) x)).(\lambda (v0: T).(\lambda (u1:
+T).(\lambda (u2: T).(\lambda (i0: nat).(\lambda (k: K).(\lambda (t0:
+T).(\lambda (t3: T).(\lambda (H2: (eq nat i0 i)).(\lambda (H3: (eq T v0
+v)).(\lambda (H4: (eq T (THead k u1 t0) (TSort n))).(\lambda (H5: (eq T
+(THead k u2 t3) x)).(\lambda (H1: (subst0 i0 v0 u1 u2)).(\lambda (H6: (subst0
+(s k i0) v0 t0 t3)).(let H7 \def (eq_ind nat i0 (\lambda (n0: nat).(subst0 (s
+k n0) v0 t0 t3)) H6 i H2) in (let H8 \def (eq_ind nat i0 (\lambda (n0:
+nat).(subst0 n0 v0 u1 u2)) H1 i H2) in (let H9 \def (eq_ind T v0 (\lambda (t:
+T).(subst0 (s k i) t t0 t3)) H7 v H3) in (let H10 \def (eq_ind T v0 (\lambda
+(t: T).(subst0 i t u1 u2)) H8 v H3) in (let H11 \def (eq_ind_r T x (\lambda
+(t: T).(subst0 i v (TSort n) t)) H0 (THead k u2 t3) H5) in (let H12 \def
+(eq_ind_r T x (\lambda (t: T).(subst0 i v (TSort n) t)) H (THead k u2 t3) H5)
+in (let H13 \def (eq_ind T (THead k u1 t0) (\lambda (ee: T).(match ee in T
+return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _)
+\Rightarrow False | (THead _ _ _) \Rightarrow True])) I (TSort n) H4) in
+(False_ind P H13)))))))))))))))))))))) H)))))).
-axiom subst0_gen_lref:
+theorem subst0_gen_lref:
\forall (v: T).(\forall (x: T).(\forall (i: nat).(\forall (n: nat).((subst0
i v (TLRef n) x) \to (land (eq nat n i) (eq T x (lift (S n) O v)))))))
-.
+\def
+ \lambda (v: T).(\lambda (x: T).(\lambda (i: nat).(\lambda (n: nat).(\lambda
+(H: (subst0 i v (TLRef n) x)).(subst0_inv_coq i v (TLRef n) x (\lambda (n0:
+nat).(\lambda (t: T).(\lambda (_: T).(\lambda (t1: T).(land (eq nat n n0) (eq
+T t1 (lift (S n) O t))))))) (\lambda (H0: (subst0 i v (TLRef n) x)).(\lambda
+(v0: T).(\lambda (i0: nat).(\lambda (H1: (eq nat i0 i)).(\lambda (H2: (eq T
+v0 v)).(\lambda (H3: (eq T (TLRef i0) (TLRef n))).(\lambda (H4: (eq T (lift
+(S i0) O v0) x)).(let H5 \def (eq_ind nat i0 (\lambda (n0: nat).(eq T (lift
+(S n0) O v0) x)) H4 i H1) in (let H6 \def (eq_ind nat i0 (\lambda (n0:
+nat).(eq T (TLRef n0) (TLRef n))) H3 i H1) in (let H7 \def (eq_ind T v0
+(\lambda (t: T).(eq T (lift (S i) O t) x)) H5 v H2) in (let H8 \def (eq_ind_r
+T x (\lambda (t: T).(subst0 i v (TLRef n) t)) H0 (lift (S i) O v) H7) in (let
+H9 \def (eq_ind_r T x (\lambda (t: T).(subst0 i v (TLRef n) t)) H (lift (S i)
+O v) H7) in (eq_ind T (lift (S i) O v) (\lambda (t: T).(land (eq nat n i) (eq
+T t (lift (S n) O v)))) (let H10 \def (f_equal T nat (\lambda (e: T).(match e
+in T return (\lambda (_: T).nat) with [(TSort _) \Rightarrow i | (TLRef n0)
+\Rightarrow n0 | (THead _ _ _) \Rightarrow i])) (TLRef i) (TLRef n) H6) in
+(let H11 \def (eq_ind_r nat n (\lambda (n0: nat).(subst0 i v (TLRef n0) (lift
+(S i) O v))) H8 i H10) in (let H12 \def (eq_ind_r nat n (\lambda (n0:
+nat).(subst0 i v (TLRef n0) (lift (S i) O v))) H9 i H10) in (eq_ind nat i
+(\lambda (n0: nat).(land (eq nat n0 i) (eq T (lift (S i) O v) (lift (S n0) O
+v)))) (conj (eq nat i i) (eq T (lift (S i) O v) (lift (S i) O v)) (refl_equal
+nat i) (refl_equal T (lift (S i) O v))) n H10)))) x H7))))))))))))) (\lambda
+(H0: (subst0 i v (TLRef n) x)).(\lambda (v0: T).(\lambda (u2: T).(\lambda
+(u1: T).(\lambda (i0: nat).(\lambda (t: T).(\lambda (k: K).(\lambda (H1: (eq
+nat i0 i)).(\lambda (H2: (eq T v0 v)).(\lambda (H3: (eq T (THead k u1 t)
+(TLRef n))).(\lambda (H4: (eq T (THead k u2 t) x)).(\lambda (H5: (subst0 i0
+v0 u1 u2)).(let H6 \def (eq_ind nat i0 (\lambda (n0: nat).(subst0 n0 v0 u1
+u2)) H5 i H1) in (let H7 \def (eq_ind T v0 (\lambda (t0: T).(subst0 i t0 u1
+u2)) H6 v H2) in (let H8 \def (eq_ind_r T x (\lambda (t0: T).(subst0 i v
+(TLRef n) t0)) H0 (THead k u2 t) H4) in (let H9 \def (eq_ind_r T x (\lambda
+(t0: T).(subst0 i v (TLRef n) t0)) H (THead k u2 t) H4) in (eq_ind T (THead k
+u2 t) (\lambda (t0: T).(land (eq nat n i) (eq T t0 (lift (S n) O v)))) (let
+H10 \def (eq_ind T (THead k u1 t) (\lambda (ee: T).(match ee in T return
+(\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _)
+\Rightarrow False | (THead _ _ _) \Rightarrow True])) I (TLRef n) H3) in
+(False_ind (land (eq nat n i) (eq T (THead k u2 t) (lift (S n) O v))) H10)) x
+H4))))))))))))))))) (\lambda (H0: (subst0 i v (TLRef n) x)).(\lambda (k:
+K).(\lambda (v0: T).(\lambda (t0: T).(\lambda (t3: T).(\lambda (i0:
+nat).(\lambda (u: T).(\lambda (H1: (eq nat i0 i)).(\lambda (H2: (eq T v0
+v)).(\lambda (H3: (eq T (THead k u t3) (TLRef n))).(\lambda (H4: (eq T (THead
+k u t0) x)).(\lambda (H5: (subst0 (s k i0) v0 t3 t0)).(let H6 \def (eq_ind
+nat i0 (\lambda (n0: nat).(subst0 (s k n0) v0 t3 t0)) H5 i H1) in (let H7
+\def (eq_ind T v0 (\lambda (t: T).(subst0 (s k i) t t3 t0)) H6 v H2) in (let
+H8 \def (eq_ind_r T x (\lambda (t: T).(subst0 i v (TLRef n) t)) H0 (THead k u
+t0) H4) in (let H9 \def (eq_ind_r T x (\lambda (t: T).(subst0 i v (TLRef n)
+t)) H (THead k u t0) H4) in (eq_ind T (THead k u t0) (\lambda (t: T).(land
+(eq nat n i) (eq T t (lift (S n) O v)))) (let H10 \def (eq_ind T (THead k u
+t3) (\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) with [(TSort
+_) \Rightarrow False | (TLRef _) \Rightarrow False | (THead _ _ _)
+\Rightarrow True])) I (TLRef n) H3) in (False_ind (land (eq nat n i) (eq T
+(THead k u t0) (lift (S n) O v))) H10)) x H4))))))))))))))))) (\lambda (H0:
+(subst0 i v (TLRef n) x)).(\lambda (v0: T).(\lambda (u1: T).(\lambda (u2:
+T).(\lambda (i0: nat).(\lambda (k: K).(\lambda (t0: T).(\lambda (t3:
+T).(\lambda (H2: (eq nat i0 i)).(\lambda (H3: (eq T v0 v)).(\lambda (H4: (eq
+T (THead k u1 t0) (TLRef n))).(\lambda (H5: (eq T (THead k u2 t3)
+x)).(\lambda (H1: (subst0 i0 v0 u1 u2)).(\lambda (H6: (subst0 (s k i0) v0 t0
+t3)).(let H7 \def (eq_ind nat i0 (\lambda (n0: nat).(subst0 (s k n0) v0 t0
+t3)) H6 i H2) in (let H8 \def (eq_ind nat i0 (\lambda (n0: nat).(subst0 n0 v0
+u1 u2)) H1 i H2) in (let H9 \def (eq_ind T v0 (\lambda (t: T).(subst0 (s k i)
+t t0 t3)) H7 v H3) in (let H10 \def (eq_ind T v0 (\lambda (t: T).(subst0 i t
+u1 u2)) H8 v H3) in (let H11 \def (eq_ind_r T x (\lambda (t: T).(subst0 i v
+(TLRef n) t)) H0 (THead k u2 t3) H5) in (let H12 \def (eq_ind_r T x (\lambda
+(t: T).(subst0 i v (TLRef n) t)) H (THead k u2 t3) H5) in (eq_ind T (THead k
+u2 t3) (\lambda (t: T).(land (eq nat n i) (eq T t (lift (S n) O v)))) (let
+H13 \def (eq_ind T (THead k u1 t0) (\lambda (ee: T).(match ee in T return
+(\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _)
+\Rightarrow False | (THead _ _ _) \Rightarrow True])) I (TLRef n) H4) in
+(False_ind (land (eq nat n i) (eq T (THead k u2 t3) (lift (S n) O v))) H13))
+x H5))))))))))))))))))))) H))))).
-axiom subst0_gen_head:
+theorem subst0_gen_head:
\forall (k: K).(\forall (v: T).(\forall (u1: T).(\forall (t1: T).(\forall
(x: T).(\forall (i: nat).((subst0 i v (THead k u1 t1) x) \to (or3 (ex2 T
(\lambda (u2: T).(eq T x (THead k u2 t1))) (\lambda (u2: T).(subst0 i v u1
T).(subst0 (s k i) v t1 t2))) (ex3_2 T T (\lambda (u2: T).(\lambda (t2:
T).(eq T x (THead k u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(subst0 i v u1
u2))) (\lambda (_: T).(\lambda (t2: T).(subst0 (s k i) v t1 t2)))))))))))
-.
+\def
+ \lambda (k: K).(\lambda (v: T).(\lambda (u1: T).(\lambda (t1: T).(\lambda
+(x: T).(\lambda (i: nat).(\lambda (H: (subst0 i v (THead k u1 t1)
+x)).(subst0_inv_coq i v (THead k u1 t1) x (\lambda (n: nat).(\lambda (t:
+T).(\lambda (_: T).(\lambda (t2: T).(or3 (ex2 T (\lambda (u2: T).(eq T t2
+(THead k u2 t1))) (\lambda (u2: T).(subst0 n t u1 u2))) (ex2 T (\lambda (t3:
+T).(eq T t2 (THead k u1 t3))) (\lambda (t3: T).(subst0 (s k n) t t1 t3)))
+(ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead k u2 t3))))
+(\lambda (u2: T).(\lambda (_: T).(subst0 n t u1 u2))) (\lambda (_:
+T).(\lambda (t3: T).(subst0 (s k n) t t1 t3))))))))) (\lambda (H0: (subst0 i
+v (THead k u1 t1) x)).(\lambda (v0: T).(\lambda (i0: nat).(\lambda (H1: (eq
+nat i0 i)).(\lambda (H2: (eq T v0 v)).(\lambda (H3: (eq T (TLRef i0) (THead k
+u1 t1))).(\lambda (H4: (eq T (lift (S i0) O v0) x)).(let H5 \def (eq_ind nat
+i0 (\lambda (n: nat).(eq T (lift (S n) O v0) x)) H4 i H1) in (let H6 \def
+(eq_ind nat i0 (\lambda (n: nat).(eq T (TLRef n) (THead k u1 t1))) H3 i H1)
+in (let H7 \def (eq_ind T v0 (\lambda (t: T).(eq T (lift (S i) O t) x)) H5 v
+H2) in (let H8 \def (eq_ind_r T x (\lambda (t: T).(subst0 i v (THead k u1 t1)
+t)) H0 (lift (S i) O v) H7) in (let H9 \def (eq_ind_r T x (\lambda (t:
+T).(subst0 i v (THead k u1 t1) t)) H (lift (S i) O v) H7) in (eq_ind T (lift
+(S i) O v) (\lambda (t: T).(or3 (ex2 T (\lambda (u2: T).(eq T t (THead k u2
+t1))) (\lambda (u2: T).(subst0 i v u1 u2))) (ex2 T (\lambda (t2: T).(eq T t
+(THead k u1 t2))) (\lambda (t2: T).(subst0 (s k i) v t1 t2))) (ex3_2 T T
+(\lambda (u2: T).(\lambda (t2: T).(eq T t (THead k u2 t2)))) (\lambda (u2:
+T).(\lambda (_: T).(subst0 i v u1 u2))) (\lambda (_: T).(\lambda (t2:
+T).(subst0 (s k i) v t1 t2)))))) (let H10 \def (eq_ind T (TLRef i) (\lambda
+(ee: T).(match ee in T return (\lambda (_: T).Prop) with [(TSort _)
+\Rightarrow False | (TLRef _) \Rightarrow True | (THead _ _ _) \Rightarrow
+False])) I (THead k u1 t1) H6) in (False_ind (or3 (ex2 T (\lambda (u2: T).(eq
+T (lift (S i) O v) (THead k u2 t1))) (\lambda (u2: T).(subst0 i v u1 u2)))
+(ex2 T (\lambda (t2: T).(eq T (lift (S i) O v) (THead k u1 t2))) (\lambda
+(t2: T).(subst0 (s k i) v t1 t2))) (ex3_2 T T (\lambda (u2: T).(\lambda (t2:
+T).(eq T (lift (S i) O v) (THead k u2 t2)))) (\lambda (u2: T).(\lambda (_:
+T).(subst0 i v u1 u2))) (\lambda (_: T).(\lambda (t2: T).(subst0 (s k i) v t1
+t2))))) H10)) x H7))))))))))))) (\lambda (H0: (subst0 i v (THead k u1 t1)
+x)).(\lambda (v0: T).(\lambda (u2: T).(\lambda (u0: T).(\lambda (i0:
+nat).(\lambda (t: T).(\lambda (k0: K).(\lambda (H1: (eq nat i0 i)).(\lambda
+(H2: (eq T v0 v)).(\lambda (H3: (eq T (THead k0 u0 t) (THead k u1
+t1))).(\lambda (H4: (eq T (THead k0 u2 t) x)).(\lambda (H5: (subst0 i0 v0 u0
+u2)).(let H6 \def (eq_ind nat i0 (\lambda (n: nat).(subst0 n v0 u0 u2)) H5 i
+H1) in (let H7 \def (eq_ind T v0 (\lambda (t0: T).(subst0 i t0 u0 u2)) H6 v
+H2) in (let H8 \def (eq_ind_r T x (\lambda (t0: T).(subst0 i v (THead k u1
+t1) t0)) H0 (THead k0 u2 t) H4) in (let H9 \def (eq_ind_r T x (\lambda (t0:
+T).(subst0 i v (THead k u1 t1) t0)) H (THead k0 u2 t) H4) in (eq_ind T (THead
+k0 u2 t) (\lambda (t0: T).(or3 (ex2 T (\lambda (u3: T).(eq T t0 (THead k u3
+t1))) (\lambda (u3: T).(subst0 i v u1 u3))) (ex2 T (\lambda (t2: T).(eq T t0
+(THead k u1 t2))) (\lambda (t2: T).(subst0 (s k i) v t1 t2))) (ex3_2 T T
+(\lambda (u3: T).(\lambda (t2: T).(eq T t0 (THead k u3 t2)))) (\lambda (u3:
+T).(\lambda (_: T).(subst0 i v u1 u3))) (\lambda (_: T).(\lambda (t2:
+T).(subst0 (s k i) v t1 t2)))))) (let H10 \def (f_equal T K (\lambda (e:
+T).(match e in T return (\lambda (_: T).K) with [(TSort _) \Rightarrow k0 |
+(TLRef _) \Rightarrow k0 | (THead k1 _ _) \Rightarrow k1])) (THead k0 u0 t)
+(THead k u1 t1) H3) in ((let H11 \def (f_equal T T (\lambda (e: T).(match e
+in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow u0 | (TLRef _)
+\Rightarrow u0 | (THead _ t0 _) \Rightarrow t0])) (THead k0 u0 t) (THead k u1
+t1) H3) in ((let H12 \def (f_equal T T (\lambda (e: T).(match e in T return
+(\lambda (_: T).T) with [(TSort _) \Rightarrow t | (TLRef _) \Rightarrow t |
+(THead _ _ t0) \Rightarrow t0])) (THead k0 u0 t) (THead k u1 t1) H3) in
+(\lambda (H13: (eq T u0 u1)).(\lambda (H14: (eq K k0 k)).(let H15 \def
+(eq_ind K k0 (\lambda (k1: K).(subst0 i v (THead k u1 t1) (THead k1 u2 t)))
+H9 k H14) in (let H16 \def (eq_ind K k0 (\lambda (k1: K).(subst0 i v (THead k
+u1 t1) (THead k1 u2 t))) H8 k H14) in (eq_ind_r K k (\lambda (k1: K).(or3
+(ex2 T (\lambda (u3: T).(eq T (THead k1 u2 t) (THead k u3 t1))) (\lambda (u3:
+T).(subst0 i v u1 u3))) (ex2 T (\lambda (t2: T).(eq T (THead k1 u2 t) (THead
+k u1 t2))) (\lambda (t2: T).(subst0 (s k i) v t1 t2))) (ex3_2 T T (\lambda
+(u3: T).(\lambda (t2: T).(eq T (THead k1 u2 t) (THead k u3 t2)))) (\lambda
+(u3: T).(\lambda (_: T).(subst0 i v u1 u3))) (\lambda (_: T).(\lambda (t2:
+T).(subst0 (s k i) v t1 t2)))))) (let H17 \def (eq_ind T t (\lambda (t0:
+T).(subst0 i v (THead k u1 t1) (THead k u2 t0))) H15 t1 H12) in (let H18 \def
+(eq_ind T t (\lambda (t0: T).(subst0 i v (THead k u1 t1) (THead k u2 t0)))
+H16 t1 H12) in (eq_ind_r T t1 (\lambda (t0: T).(or3 (ex2 T (\lambda (u3:
+T).(eq T (THead k u2 t0) (THead k u3 t1))) (\lambda (u3: T).(subst0 i v u1
+u3))) (ex2 T (\lambda (t2: T).(eq T (THead k u2 t0) (THead k u1 t2)))
+(\lambda (t2: T).(subst0 (s k i) v t1 t2))) (ex3_2 T T (\lambda (u3:
+T).(\lambda (t2: T).(eq T (THead k u2 t0) (THead k u3 t2)))) (\lambda (u3:
+T).(\lambda (_: T).(subst0 i v u1 u3))) (\lambda (_: T).(\lambda (t2:
+T).(subst0 (s k i) v t1 t2)))))) (let H19 \def (eq_ind T u0 (\lambda (t0:
+T).(subst0 i v t0 u2)) H7 u1 H13) in (or3_intro0 (ex2 T (\lambda (u3: T).(eq
+T (THead k u2 t1) (THead k u3 t1))) (\lambda (u3: T).(subst0 i v u1 u3)))
+(ex2 T (\lambda (t2: T).(eq T (THead k u2 t1) (THead k u1 t2))) (\lambda (t2:
+T).(subst0 (s k i) v t1 t2))) (ex3_2 T T (\lambda (u3: T).(\lambda (t2:
+T).(eq T (THead k u2 t1) (THead k u3 t2)))) (\lambda (u3: T).(\lambda (_:
+T).(subst0 i v u1 u3))) (\lambda (_: T).(\lambda (t2: T).(subst0 (s k i) v t1
+t2)))) (ex_intro2 T (\lambda (u3: T).(eq T (THead k u2 t1) (THead k u3 t1)))
+(\lambda (u3: T).(subst0 i v u1 u3)) u2 (refl_equal T (THead k u2 t1)) H19)))
+t H12))) k0 H14)))))) H11)) H10)) x H4))))))))))))))))) (\lambda (H0: (subst0
+i v (THead k u1 t1) x)).(\lambda (k0: K).(\lambda (v0: T).(\lambda (t0:
+T).(\lambda (t3: T).(\lambda (i0: nat).(\lambda (u: T).(\lambda (H1: (eq nat
+i0 i)).(\lambda (H2: (eq T v0 v)).(\lambda (H3: (eq T (THead k0 u t3) (THead
+k u1 t1))).(\lambda (H4: (eq T (THead k0 u t0) x)).(\lambda (H5: (subst0 (s
+k0 i0) v0 t3 t0)).(let H6 \def (eq_ind nat i0 (\lambda (n: nat).(subst0 (s k0
+n) v0 t3 t0)) H5 i H1) in (let H7 \def (eq_ind T v0 (\lambda (t: T).(subst0
+(s k0 i) t t3 t0)) H6 v H2) in (let H8 \def (eq_ind_r T x (\lambda (t:
+T).(subst0 i v (THead k u1 t1) t)) H0 (THead k0 u t0) H4) in (let H9 \def
+(eq_ind_r T x (\lambda (t: T).(subst0 i v (THead k u1 t1) t)) H (THead k0 u
+t0) H4) in (eq_ind T (THead k0 u t0) (\lambda (t: T).(or3 (ex2 T (\lambda
+(u2: T).(eq T t (THead k u2 t1))) (\lambda (u2: T).(subst0 i v u1 u2))) (ex2
+T (\lambda (t2: T).(eq T t (THead k u1 t2))) (\lambda (t2: T).(subst0 (s k i)
+v t1 t2))) (ex3_2 T T (\lambda (u2: T).(\lambda (t2: T).(eq T t (THead k u2
+t2)))) (\lambda (u2: T).(\lambda (_: T).(subst0 i v u1 u2))) (\lambda (_:
+T).(\lambda (t2: T).(subst0 (s k i) v t1 t2)))))) (let H10 \def (f_equal T K
+(\lambda (e: T).(match e in T return (\lambda (_: T).K) with [(TSort _)
+\Rightarrow k0 | (TLRef _) \Rightarrow k0 | (THead k1 _ _) \Rightarrow k1]))
+(THead k0 u t3) (THead k u1 t1) H3) in ((let H11 \def (f_equal T T (\lambda
+(e: T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow u
+| (TLRef _) \Rightarrow u | (THead _ t _) \Rightarrow t])) (THead k0 u t3)
+(THead k u1 t1) H3) in ((let H12 \def (f_equal T T (\lambda (e: T).(match e
+in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow t3 | (TLRef _)
+\Rightarrow t3 | (THead _ _ t) \Rightarrow t])) (THead k0 u t3) (THead k u1
+t1) H3) in (\lambda (H13: (eq T u u1)).(\lambda (H14: (eq K k0 k)).(let H15
+\def (eq_ind T u (\lambda (t: T).(subst0 i v (THead k u1 t1) (THead k0 t
+t0))) H9 u1 H13) in (let H16 \def (eq_ind T u (\lambda (t: T).(subst0 i v
+(THead k u1 t1) (THead k0 t t0))) H8 u1 H13) in (eq_ind_r T u1 (\lambda (t:
+T).(or3 (ex2 T (\lambda (u2: T).(eq T (THead k0 t t0) (THead k u2 t1)))
+(\lambda (u2: T).(subst0 i v u1 u2))) (ex2 T (\lambda (t2: T).(eq T (THead k0
+t t0) (THead k u1 t2))) (\lambda (t2: T).(subst0 (s k i) v t1 t2))) (ex3_2 T
+T (\lambda (u2: T).(\lambda (t2: T).(eq T (THead k0 t t0) (THead k u2 t2))))
+(\lambda (u2: T).(\lambda (_: T).(subst0 i v u1 u2))) (\lambda (_:
+T).(\lambda (t2: T).(subst0 (s k i) v t1 t2)))))) (let H17 \def (eq_ind T t3
+(\lambda (t: T).(subst0 (s k0 i) v t t0)) H7 t1 H12) in (let H18 \def (eq_ind
+K k0 (\lambda (k1: K).(subst0 i v (THead k u1 t1) (THead k1 u1 t0))) H15 k
+H14) in (let H19 \def (eq_ind K k0 (\lambda (k1: K).(subst0 i v (THead k u1
+t1) (THead k1 u1 t0))) H16 k H14) in (let H20 \def (eq_ind K k0 (\lambda (k1:
+K).(subst0 (s k1 i) v t1 t0)) H17 k H14) in (eq_ind_r K k (\lambda (k1:
+K).(or3 (ex2 T (\lambda (u2: T).(eq T (THead k1 u1 t0) (THead k u2 t1)))
+(\lambda (u2: T).(subst0 i v u1 u2))) (ex2 T (\lambda (t2: T).(eq T (THead k1
+u1 t0) (THead k u1 t2))) (\lambda (t2: T).(subst0 (s k i) v t1 t2))) (ex3_2 T
+T (\lambda (u2: T).(\lambda (t2: T).(eq T (THead k1 u1 t0) (THead k u2 t2))))
+(\lambda (u2: T).(\lambda (_: T).(subst0 i v u1 u2))) (\lambda (_:
+T).(\lambda (t2: T).(subst0 (s k i) v t1 t2)))))) (or3_intro1 (ex2 T (\lambda
+(u2: T).(eq T (THead k u1 t0) (THead k u2 t1))) (\lambda (u2: T).(subst0 i v
+u1 u2))) (ex2 T (\lambda (t2: T).(eq T (THead k u1 t0) (THead k u1 t2)))
+(\lambda (t2: T).(subst0 (s k i) v t1 t2))) (ex3_2 T T (\lambda (u2:
+T).(\lambda (t2: T).(eq T (THead k u1 t0) (THead k u2 t2)))) (\lambda (u2:
+T).(\lambda (_: T).(subst0 i v u1 u2))) (\lambda (_: T).(\lambda (t2:
+T).(subst0 (s k i) v t1 t2)))) (ex_intro2 T (\lambda (t2: T).(eq T (THead k
+u1 t0) (THead k u1 t2))) (\lambda (t2: T).(subst0 (s k i) v t1 t2)) t0
+(refl_equal T (THead k u1 t0)) H20)) k0 H14))))) u H13)))))) H11)) H10)) x
+H4))))))))))))))))) (\lambda (H0: (subst0 i v (THead k u1 t1) x)).(\lambda
+(v0: T).(\lambda (u0: T).(\lambda (u2: T).(\lambda (i0: nat).(\lambda (k0:
+K).(\lambda (t0: T).(\lambda (t3: T).(\lambda (H2: (eq nat i0 i)).(\lambda
+(H3: (eq T v0 v)).(\lambda (H4: (eq T (THead k0 u0 t0) (THead k u1
+t1))).(\lambda (H5: (eq T (THead k0 u2 t3) x)).(\lambda (H1: (subst0 i0 v0 u0
+u2)).(\lambda (H6: (subst0 (s k0 i0) v0 t0 t3)).(let H7 \def (eq_ind nat i0
+(\lambda (n: nat).(subst0 (s k0 n) v0 t0 t3)) H6 i H2) in (let H8 \def
+(eq_ind nat i0 (\lambda (n: nat).(subst0 n v0 u0 u2)) H1 i H2) in (let H9
+\def (eq_ind T v0 (\lambda (t: T).(subst0 (s k0 i) t t0 t3)) H7 v H3) in (let
+H10 \def (eq_ind T v0 (\lambda (t: T).(subst0 i t u0 u2)) H8 v H3) in (let
+H11 \def (eq_ind_r T x (\lambda (t: T).(subst0 i v (THead k u1 t1) t)) H0
+(THead k0 u2 t3) H5) in (let H12 \def (eq_ind_r T x (\lambda (t: T).(subst0 i
+v (THead k u1 t1) t)) H (THead k0 u2 t3) H5) in (eq_ind T (THead k0 u2 t3)
+(\lambda (t: T).(or3 (ex2 T (\lambda (u3: T).(eq T t (THead k u3 t1)))
+(\lambda (u3: T).(subst0 i v u1 u3))) (ex2 T (\lambda (t2: T).(eq T t (THead
+k u1 t2))) (\lambda (t2: T).(subst0 (s k i) v t1 t2))) (ex3_2 T T (\lambda
+(u3: T).(\lambda (t2: T).(eq T t (THead k u3 t2)))) (\lambda (u3: T).(\lambda
+(_: T).(subst0 i v u1 u3))) (\lambda (_: T).(\lambda (t2: T).(subst0 (s k i)
+v t1 t2)))))) (let H13 \def (f_equal T K (\lambda (e: T).(match e in T return
+(\lambda (_: T).K) with [(TSort _) \Rightarrow k0 | (TLRef _) \Rightarrow k0
+| (THead k1 _ _) \Rightarrow k1])) (THead k0 u0 t0) (THead k u1 t1) H4) in
+((let H14 \def (f_equal T T (\lambda (e: T).(match e in T return (\lambda (_:
+T).T) with [(TSort _) \Rightarrow u0 | (TLRef _) \Rightarrow u0 | (THead _ t
+_) \Rightarrow t])) (THead k0 u0 t0) (THead k u1 t1) H4) in ((let H15 \def
+(f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) with
+[(TSort _) \Rightarrow t0 | (TLRef _) \Rightarrow t0 | (THead _ _ t)
+\Rightarrow t])) (THead k0 u0 t0) (THead k u1 t1) H4) in (\lambda (H16: (eq T
+u0 u1)).(\lambda (H17: (eq K k0 k)).(let H18 \def (eq_ind T t0 (\lambda (t:
+T).(subst0 (s k0 i) v t t3)) H9 t1 H15) in (let H19 \def (eq_ind K k0
+(\lambda (k1: K).(subst0 i v (THead k u1 t1) (THead k1 u2 t3))) H12 k H17) in
+(let H20 \def (eq_ind K k0 (\lambda (k1: K).(subst0 i v (THead k u1 t1)
+(THead k1 u2 t3))) H11 k H17) in (let H21 \def (eq_ind K k0 (\lambda (k1:
+K).(subst0 (s k1 i) v t1 t3)) H18 k H17) in (eq_ind_r K k (\lambda (k1:
+K).(or3 (ex2 T (\lambda (u3: T).(eq T (THead k1 u2 t3) (THead k u3 t1)))
+(\lambda (u3: T).(subst0 i v u1 u3))) (ex2 T (\lambda (t2: T).(eq T (THead k1
+u2 t3) (THead k u1 t2))) (\lambda (t2: T).(subst0 (s k i) v t1 t2))) (ex3_2 T
+T (\lambda (u3: T).(\lambda (t2: T).(eq T (THead k1 u2 t3) (THead k u3 t2))))
+(\lambda (u3: T).(\lambda (_: T).(subst0 i v u1 u3))) (\lambda (_:
+T).(\lambda (t2: T).(subst0 (s k i) v t1 t2)))))) (let H22 \def (eq_ind T u0
+(\lambda (t: T).(subst0 i v t u2)) H10 u1 H16) in (or3_intro2 (ex2 T (\lambda
+(u3: T).(eq T (THead k u2 t3) (THead k u3 t1))) (\lambda (u3: T).(subst0 i v
+u1 u3))) (ex2 T (\lambda (t2: T).(eq T (THead k u2 t3) (THead k u1 t2)))
+(\lambda (t2: T).(subst0 (s k i) v t1 t2))) (ex3_2 T T (\lambda (u3:
+T).(\lambda (t2: T).(eq T (THead k u2 t3) (THead k u3 t2)))) (\lambda (u3:
+T).(\lambda (_: T).(subst0 i v u1 u3))) (\lambda (_: T).(\lambda (t2:
+T).(subst0 (s k i) v t1 t2)))) (ex3_2_intro T T (\lambda (u3: T).(\lambda
+(t2: T).(eq T (THead k u2 t3) (THead k u3 t2)))) (\lambda (u3: T).(\lambda
+(_: T).(subst0 i v u1 u3))) (\lambda (_: T).(\lambda (t2: T).(subst0 (s k i)
+v t1 t2))) u2 t3 (refl_equal T (THead k u2 t3)) H22 H21))) k0 H17))))))))
+H14)) H13)) x H5))))))))))))))))))))) H))))))).
-axiom subst0_gen_lift_lt:
+theorem subst0_gen_lift_lt:
\forall (u: T).(\forall (t1: T).(\forall (x: T).(\forall (i: nat).(\forall
(h: nat).(\forall (d: nat).((subst0 i (lift h d u) (lift h (S (plus i d)) t1)
x) \to (ex2 T (\lambda (t2: T).(eq T x (lift h (S (plus i d)) t2))) (\lambda
(t2: T).(subst0 i u t1 t2)))))))))
-.
+\def
+ \lambda (u: T).(\lambda (t1: T).(T_ind (\lambda (t: T).(\forall (x:
+T).(\forall (i: nat).(\forall (h: nat).(\forall (d: nat).((subst0 i (lift h d
+u) (lift h (S (plus i d)) t) x) \to (ex2 T (\lambda (t2: T).(eq T x (lift h
+(S (plus i d)) t2))) (\lambda (t2: T).(subst0 i u t t2))))))))) (\lambda (n:
+nat).(\lambda (x: T).(\lambda (i: nat).(\lambda (h: nat).(\lambda (d:
+nat).(\lambda (H: (subst0 i (lift h d u) (lift h (S (plus i d)) (TSort n))
+x)).(let H0 \def (eq_ind T (lift h (S (plus i d)) (TSort n)) (\lambda (t:
+T).(subst0 i (lift h d u) t x)) H (TSort n) (lift_sort n h (S (plus i d))))
+in (subst0_gen_sort (lift h d u) x i n H0 (ex2 T (\lambda (t2: T).(eq T x
+(lift h (S (plus i d)) t2))) (\lambda (t2: T).(subst0 i u (TSort n)
+t2))))))))))) (\lambda (n: nat).(\lambda (x: T).(\lambda (i: nat).(\lambda
+(h: nat).(\lambda (d: nat).(\lambda (H: (subst0 i (lift h d u) (lift h (S
+(plus i d)) (TLRef n)) x)).(lt_le_e n (S (plus i d)) (ex2 T (\lambda (t2:
+T).(eq T x (lift h (S (plus i d)) t2))) (\lambda (t2: T).(subst0 i u (TLRef
+n) t2))) (\lambda (H0: (lt n (S (plus i d)))).(let H1 \def (eq_ind T (lift h
+(S (plus i d)) (TLRef n)) (\lambda (t: T).(subst0 i (lift h d u) t x)) H
+(TLRef n) (lift_lref_lt n h (S (plus i d)) H0)) in (and_ind (eq nat n i) (eq
+T x (lift (S n) O (lift h d u))) (ex2 T (\lambda (t2: T).(eq T x (lift h (S
+(plus i d)) t2))) (\lambda (t2: T).(subst0 i u (TLRef n) t2))) (\lambda (H2:
+(eq nat n i)).(\lambda (H3: (eq T x (lift (S n) O (lift h d u)))).(eq_ind_r T
+(lift (S n) O (lift h d u)) (\lambda (t: T).(ex2 T (\lambda (t2: T).(eq T t
+(lift h (S (plus i d)) t2))) (\lambda (t2: T).(subst0 i u (TLRef n) t2))))
+(eq_ind_r nat i (\lambda (n0: nat).(ex2 T (\lambda (t2: T).(eq T (lift (S n0)
+O (lift h d u)) (lift h (S (plus i d)) t2))) (\lambda (t2: T).(subst0 i u
+(TLRef n0) t2)))) (eq_ind T (lift h (plus (S i) d) (lift (S i) O u)) (\lambda
+(t: T).(ex2 T (\lambda (t2: T).(eq T t (lift h (S (plus i d)) t2))) (\lambda
+(t2: T).(subst0 i u (TLRef i) t2)))) (ex_intro2 T (\lambda (t2: T).(eq T
+(lift h (S (plus i d)) (lift (S i) O u)) (lift h (S (plus i d)) t2)))
+(\lambda (t2: T).(subst0 i u (TLRef i) t2)) (lift (S i) O u) (refl_equal T
+(lift h (S (plus i d)) (lift (S i) O u))) (subst0_lref u i)) (lift (S i) O
+(lift h d u)) (lift_d u h (S i) d O (le_O_n d))) n H2) x H3)))
+(subst0_gen_lref (lift h d u) x i n H1)))) (\lambda (H0: (le (S (plus i d))
+n)).(let H1 \def (eq_ind T (lift h (S (plus i d)) (TLRef n)) (\lambda (t:
+T).(subst0 i (lift h d u) t x)) H (TLRef (plus n h)) (lift_lref_ge n h (S
+(plus i d)) H0)) in (and_ind (eq nat (plus n h) i) (eq T x (lift (S (plus n
+h)) O (lift h d u))) (ex2 T (\lambda (t2: T).(eq T x (lift h (S (plus i d))
+t2))) (\lambda (t2: T).(subst0 i u (TLRef n) t2))) (\lambda (H2: (eq nat
+(plus n h) i)).(\lambda (_: (eq T x (lift (S (plus n h)) O (lift h d
+u)))).(let H4 \def (eq_ind_r nat i (\lambda (n0: nat).(le (S (plus n0 d)) n))
+H0 (plus n h) H2) in (le_false n (plus (plus n h) d) (ex2 T (\lambda (t2:
+T).(eq T x (lift h (S (plus i d)) t2))) (\lambda (t2: T).(subst0 i u (TLRef
+n) t2))) (le_plus_trans n (plus n h) d (le_plus_l n h)) H4))))
+(subst0_gen_lref (lift h d u) x i (plus n h) H1))))))))))) (\lambda (k:
+K).(\lambda (t: T).(\lambda (H: ((\forall (x: T).(\forall (i: nat).(\forall
+(h: nat).(\forall (d: nat).((subst0 i (lift h d u) (lift h (S (plus i d)) t)
+x) \to (ex2 T (\lambda (t2: T).(eq T x (lift h (S (plus i d)) t2))) (\lambda
+(t2: T).(subst0 i u t t2)))))))))).(\lambda (t0: T).(\lambda (H0: ((\forall
+(x: T).(\forall (i: nat).(\forall (h: nat).(\forall (d: nat).((subst0 i (lift
+h d u) (lift h (S (plus i d)) t0) x) \to (ex2 T (\lambda (t2: T).(eq T x
+(lift h (S (plus i d)) t2))) (\lambda (t2: T).(subst0 i u t0
+t2)))))))))).(\lambda (x: T).(\lambda (i: nat).(\lambda (h: nat).(\lambda (d:
+nat).(\lambda (H1: (subst0 i (lift h d u) (lift h (S (plus i d)) (THead k t
+t0)) x)).(let H2 \def (eq_ind T (lift h (S (plus i d)) (THead k t t0))
+(\lambda (t2: T).(subst0 i (lift h d u) t2 x)) H1 (THead k (lift h (S (plus i
+d)) t) (lift h (s k (S (plus i d))) t0)) (lift_head k t t0 h (S (plus i d))))
+in (or3_ind (ex2 T (\lambda (u2: T).(eq T x (THead k u2 (lift h (s k (S (plus
+i d))) t0)))) (\lambda (u2: T).(subst0 i (lift h d u) (lift h (S (plus i d))
+t) u2))) (ex2 T (\lambda (t2: T).(eq T x (THead k (lift h (S (plus i d)) t)
+t2))) (\lambda (t2: T).(subst0 (s k i) (lift h d u) (lift h (s k (S (plus i
+d))) t0) t2))) (ex3_2 T T (\lambda (u2: T).(\lambda (t2: T).(eq T x (THead k
+u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(subst0 i (lift h d u) (lift h (S
+(plus i d)) t) u2))) (\lambda (_: T).(\lambda (t2: T).(subst0 (s k i) (lift h
+d u) (lift h (s k (S (plus i d))) t0) t2)))) (ex2 T (\lambda (t2: T).(eq T x
+(lift h (S (plus i d)) t2))) (\lambda (t2: T).(subst0 i u (THead k t t0)
+t2))) (\lambda (H3: (ex2 T (\lambda (u2: T).(eq T x (THead k u2 (lift h (s k
+(S (plus i d))) t0)))) (\lambda (u2: T).(subst0 i (lift h d u) (lift h (S
+(plus i d)) t) u2)))).(ex2_ind T (\lambda (u2: T).(eq T x (THead k u2 (lift h
+(s k (S (plus i d))) t0)))) (\lambda (u2: T).(subst0 i (lift h d u) (lift h
+(S (plus i d)) t) u2)) (ex2 T (\lambda (t2: T).(eq T x (lift h (S (plus i d))
+t2))) (\lambda (t2: T).(subst0 i u (THead k t t0) t2))) (\lambda (x0:
+T).(\lambda (H4: (eq T x (THead k x0 (lift h (s k (S (plus i d)))
+t0)))).(\lambda (H5: (subst0 i (lift h d u) (lift h (S (plus i d)) t)
+x0)).(eq_ind_r T (THead k x0 (lift h (s k (S (plus i d))) t0)) (\lambda (t2:
+T).(ex2 T (\lambda (t3: T).(eq T t2 (lift h (S (plus i d)) t3))) (\lambda
+(t3: T).(subst0 i u (THead k t t0) t3)))) (ex2_ind T (\lambda (t2: T).(eq T
+x0 (lift h (S (plus i d)) t2))) (\lambda (t2: T).(subst0 i u t t2)) (ex2 T
+(\lambda (t2: T).(eq T (THead k x0 (lift h (s k (S (plus i d))) t0)) (lift h
+(S (plus i d)) t2))) (\lambda (t2: T).(subst0 i u (THead k t t0) t2)))
+(\lambda (x1: T).(\lambda (H6: (eq T x0 (lift h (S (plus i d)) x1))).(\lambda
+(H7: (subst0 i u t x1)).(eq_ind_r T (lift h (S (plus i d)) x1) (\lambda (t2:
+T).(ex2 T (\lambda (t3: T).(eq T (THead k t2 (lift h (s k (S (plus i d)))
+t0)) (lift h (S (plus i d)) t3))) (\lambda (t3: T).(subst0 i u (THead k t t0)
+t3)))) (eq_ind T (lift h (S (plus i d)) (THead k x1 t0)) (\lambda (t2:
+T).(ex2 T (\lambda (t3: T).(eq T t2 (lift h (S (plus i d)) t3))) (\lambda
+(t3: T).(subst0 i u (THead k t t0) t3)))) (ex_intro2 T (\lambda (t2: T).(eq T
+(lift h (S (plus i d)) (THead k x1 t0)) (lift h (S (plus i d)) t2))) (\lambda
+(t2: T).(subst0 i u (THead k t t0) t2)) (THead k x1 t0) (refl_equal T (lift h
+(S (plus i d)) (THead k x1 t0))) (subst0_fst u x1 t i H7 t0 k)) (THead k
+(lift h (S (plus i d)) x1) (lift h (s k (S (plus i d))) t0)) (lift_head k x1
+t0 h (S (plus i d)))) x0 H6)))) (H x0 i h d H5)) x H4)))) H3)) (\lambda (H3:
+(ex2 T (\lambda (t2: T).(eq T x (THead k (lift h (S (plus i d)) t) t2)))
+(\lambda (t2: T).(subst0 (s k i) (lift h d u) (lift h (s k (S (plus i d)))
+t0) t2)))).(ex2_ind T (\lambda (t2: T).(eq T x (THead k (lift h (S (plus i
+d)) t) t2))) (\lambda (t2: T).(subst0 (s k i) (lift h d u) (lift h (s k (S
+(plus i d))) t0) t2)) (ex2 T (\lambda (t2: T).(eq T x (lift h (S (plus i d))
+t2))) (\lambda (t2: T).(subst0 i u (THead k t t0) t2))) (\lambda (x0:
+T).(\lambda (H4: (eq T x (THead k (lift h (S (plus i d)) t) x0))).(\lambda
+(H5: (subst0 (s k i) (lift h d u) (lift h (s k (S (plus i d))) t0)
+x0)).(eq_ind_r T (THead k (lift h (S (plus i d)) t) x0) (\lambda (t2: T).(ex2
+T (\lambda (t3: T).(eq T t2 (lift h (S (plus i d)) t3))) (\lambda (t3:
+T).(subst0 i u (THead k t t0) t3)))) (let H6 \def (eq_ind nat (s k (S (plus i
+d))) (\lambda (n: nat).(subst0 (s k i) (lift h d u) (lift h n t0) x0)) H5 (S
+(s k (plus i d))) (s_S k (plus i d))) in (let H7 \def (eq_ind nat (s k (plus
+i d)) (\lambda (n: nat).(subst0 (s k i) (lift h d u) (lift h (S n) t0) x0))
+H6 (plus (s k i) d) (s_plus k i d)) in (ex2_ind T (\lambda (t2: T).(eq T x0
+(lift h (S (plus (s k i) d)) t2))) (\lambda (t2: T).(subst0 (s k i) u t0 t2))
+(ex2 T (\lambda (t2: T).(eq T (THead k (lift h (S (plus i d)) t) x0) (lift h
+(S (plus i d)) t2))) (\lambda (t2: T).(subst0 i u (THead k t t0) t2)))
+(\lambda (x1: T).(\lambda (H8: (eq T x0 (lift h (S (plus (s k i) d))
+x1))).(\lambda (H9: (subst0 (s k i) u t0 x1)).(eq_ind_r T (lift h (S (plus (s
+k i) d)) x1) (\lambda (t2: T).(ex2 T (\lambda (t3: T).(eq T (THead k (lift h
+(S (plus i d)) t) t2) (lift h (S (plus i d)) t3))) (\lambda (t3: T).(subst0 i
+u (THead k t t0) t3)))) (eq_ind nat (s k (plus i d)) (\lambda (n: nat).(ex2 T
+(\lambda (t2: T).(eq T (THead k (lift h (S (plus i d)) t) (lift h (S n) x1))
+(lift h (S (plus i d)) t2))) (\lambda (t2: T).(subst0 i u (THead k t t0)
+t2)))) (eq_ind nat (s k (S (plus i d))) (\lambda (n: nat).(ex2 T (\lambda
+(t2: T).(eq T (THead k (lift h (S (plus i d)) t) (lift h n x1)) (lift h (S
+(plus i d)) t2))) (\lambda (t2: T).(subst0 i u (THead k t t0) t2)))) (eq_ind
+T (lift h (S (plus i d)) (THead k t x1)) (\lambda (t2: T).(ex2 T (\lambda
+(t3: T).(eq T t2 (lift h (S (plus i d)) t3))) (\lambda (t3: T).(subst0 i u
+(THead k t t0) t3)))) (ex_intro2 T (\lambda (t2: T).(eq T (lift h (S (plus i
+d)) (THead k t x1)) (lift h (S (plus i d)) t2))) (\lambda (t2: T).(subst0 i u
+(THead k t t0) t2)) (THead k t x1) (refl_equal T (lift h (S (plus i d))
+(THead k t x1))) (subst0_snd k u x1 t0 i H9 t)) (THead k (lift h (S (plus i
+d)) t) (lift h (s k (S (plus i d))) x1)) (lift_head k t x1 h (S (plus i d))))
+(S (s k (plus i d))) (s_S k (plus i d))) (plus (s k i) d) (s_plus k i d)) x0
+H8)))) (H0 x0 (s k i) h d H7)))) x H4)))) H3)) (\lambda (H3: (ex3_2 T T
+(\lambda (u2: T).(\lambda (t2: T).(eq T x (THead k u2 t2)))) (\lambda (u2:
+T).(\lambda (_: T).(subst0 i (lift h d u) (lift h (S (plus i d)) t) u2)))
+(\lambda (_: T).(\lambda (t2: T).(subst0 (s k i) (lift h d u) (lift h (s k (S
+(plus i d))) t0) t2))))).(ex3_2_ind T T (\lambda (u2: T).(\lambda (t2: T).(eq
+T x (THead k u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(subst0 i (lift h d
+u) (lift h (S (plus i d)) t) u2))) (\lambda (_: T).(\lambda (t2: T).(subst0
+(s k i) (lift h d u) (lift h (s k (S (plus i d))) t0) t2))) (ex2 T (\lambda
+(t2: T).(eq T x (lift h (S (plus i d)) t2))) (\lambda (t2: T).(subst0 i u
+(THead k t t0) t2))) (\lambda (x0: T).(\lambda (x1: T).(\lambda (H4: (eq T x
+(THead k x0 x1))).(\lambda (H5: (subst0 i (lift h d u) (lift h (S (plus i d))
+t) x0)).(\lambda (H6: (subst0 (s k i) (lift h d u) (lift h (s k (S (plus i
+d))) t0) x1)).(eq_ind_r T (THead k x0 x1) (\lambda (t2: T).(ex2 T (\lambda
+(t3: T).(eq T t2 (lift h (S (plus i d)) t3))) (\lambda (t3: T).(subst0 i u
+(THead k t t0) t3)))) (let H7 \def (eq_ind nat (s k (S (plus i d))) (\lambda
+(n: nat).(subst0 (s k i) (lift h d u) (lift h n t0) x1)) H6 (S (s k (plus i
+d))) (s_S k (plus i d))) in (let H8 \def (eq_ind nat (s k (plus i d))
+(\lambda (n: nat).(subst0 (s k i) (lift h d u) (lift h (S n) t0) x1)) H7
+(plus (s k i) d) (s_plus k i d)) in (ex2_ind T (\lambda (t2: T).(eq T x1
+(lift h (S (plus (s k i) d)) t2))) (\lambda (t2: T).(subst0 (s k i) u t0 t2))
+(ex2 T (\lambda (t2: T).(eq T (THead k x0 x1) (lift h (S (plus i d)) t2)))
+(\lambda (t2: T).(subst0 i u (THead k t t0) t2))) (\lambda (x2: T).(\lambda
+(H9: (eq T x1 (lift h (S (plus (s k i) d)) x2))).(\lambda (H10: (subst0 (s k
+i) u t0 x2)).(ex2_ind T (\lambda (t2: T).(eq T x0 (lift h (S (plus i d))
+t2))) (\lambda (t2: T).(subst0 i u t t2)) (ex2 T (\lambda (t2: T).(eq T
+(THead k x0 x1) (lift h (S (plus i d)) t2))) (\lambda (t2: T).(subst0 i u
+(THead k t t0) t2))) (\lambda (x3: T).(\lambda (H11: (eq T x0 (lift h (S
+(plus i d)) x3))).(\lambda (H12: (subst0 i u t x3)).(eq_ind_r T (lift h (S
+(plus i d)) x3) (\lambda (t2: T).(ex2 T (\lambda (t3: T).(eq T (THead k t2
+x1) (lift h (S (plus i d)) t3))) (\lambda (t3: T).(subst0 i u (THead k t t0)
+t3)))) (eq_ind_r T (lift h (S (plus (s k i) d)) x2) (\lambda (t2: T).(ex2 T
+(\lambda (t3: T).(eq T (THead k (lift h (S (plus i d)) x3) t2) (lift h (S
+(plus i d)) t3))) (\lambda (t3: T).(subst0 i u (THead k t t0) t3)))) (eq_ind
+nat (s k (plus i d)) (\lambda (n: nat).(ex2 T (\lambda (t2: T).(eq T (THead k
+(lift h (S (plus i d)) x3) (lift h (S n) x2)) (lift h (S (plus i d)) t2)))
+(\lambda (t2: T).(subst0 i u (THead k t t0) t2)))) (eq_ind nat (s k (S (plus
+i d))) (\lambda (n: nat).(ex2 T (\lambda (t2: T).(eq T (THead k (lift h (S
+(plus i d)) x3) (lift h n x2)) (lift h (S (plus i d)) t2))) (\lambda (t2:
+T).(subst0 i u (THead k t t0) t2)))) (eq_ind T (lift h (S (plus i d)) (THead
+k x3 x2)) (\lambda (t2: T).(ex2 T (\lambda (t3: T).(eq T t2 (lift h (S (plus
+i d)) t3))) (\lambda (t3: T).(subst0 i u (THead k t t0) t3)))) (ex_intro2 T
+(\lambda (t2: T).(eq T (lift h (S (plus i d)) (THead k x3 x2)) (lift h (S
+(plus i d)) t2))) (\lambda (t2: T).(subst0 i u (THead k t t0) t2)) (THead k
+x3 x2) (refl_equal T (lift h (S (plus i d)) (THead k x3 x2))) (subst0_both u
+t x3 i H12 k t0 x2 H10)) (THead k (lift h (S (plus i d)) x3) (lift h (s k (S
+(plus i d))) x2)) (lift_head k x3 x2 h (S (plus i d)))) (S (s k (plus i d)))
+(s_S k (plus i d))) (plus (s k i) d) (s_plus k i d)) x1 H9) x0 H11)))) (H x0
+i h d H5))))) (H0 x1 (s k i) h d H8)))) x H4)))))) H3)) (subst0_gen_head k
+(lift h d u) (lift h (S (plus i d)) t) (lift h (s k (S (plus i d))) t0) x i
+H2))))))))))))) t1)).
-axiom subst0_gen_lift_false:
+theorem subst0_gen_lift_false:
\forall (t: T).(\forall (u: T).(\forall (x: T).(\forall (h: nat).(\forall
(d: nat).(\forall (i: nat).((le d i) \to ((lt i (plus d h)) \to ((subst0 i u
(lift h d t) x) \to (\forall (P: Prop).P)))))))))
-.
+\def
+ \lambda (t: T).(T_ind (\lambda (t0: T).(\forall (u: T).(\forall (x:
+T).(\forall (h: nat).(\forall (d: nat).(\forall (i: nat).((le d i) \to ((lt i
+(plus d h)) \to ((subst0 i u (lift h d t0) x) \to (\forall (P:
+Prop).P)))))))))) (\lambda (n: nat).(\lambda (u: T).(\lambda (x: T).(\lambda
+(h: nat).(\lambda (d: nat).(\lambda (i: nat).(\lambda (_: (le d i)).(\lambda
+(_: (lt i (plus d h))).(\lambda (H1: (subst0 i u (lift h d (TSort n))
+x)).(\lambda (P: Prop).(let H2 \def (eq_ind T (lift h d (TSort n)) (\lambda
+(t0: T).(subst0 i u t0 x)) H1 (TSort n) (lift_sort n h d)) in
+(subst0_gen_sort u x i n H2 P)))))))))))) (\lambda (n: nat).(\lambda (u:
+T).(\lambda (x: T).(\lambda (h: nat).(\lambda (d: nat).(\lambda (i:
+nat).(\lambda (H: (le d i)).(\lambda (H0: (lt i (plus d h))).(\lambda (H1:
+(subst0 i u (lift h d (TLRef n)) x)).(\lambda (P: Prop).(lt_le_e n d P
+(\lambda (H2: (lt n d)).(let H3 \def (eq_ind T (lift h d (TLRef n)) (\lambda
+(t0: T).(subst0 i u t0 x)) H1 (TLRef n) (lift_lref_lt n h d H2)) in (and_ind
+(eq nat n i) (eq T x (lift (S n) O u)) P (\lambda (H4: (eq nat n i)).(\lambda
+(_: (eq T x (lift (S n) O u))).(let H6 \def (eq_ind nat n (\lambda (n0:
+nat).(lt n0 d)) H2 i H4) in (le_false d i P H H6)))) (subst0_gen_lref u x i n
+H3)))) (\lambda (H2: (le d n)).(let H3 \def (eq_ind T (lift h d (TLRef n))
+(\lambda (t0: T).(subst0 i u t0 x)) H1 (TLRef (plus n h)) (lift_lref_ge n h d
+H2)) in (and_ind (eq nat (plus n h) i) (eq T x (lift (S (plus n h)) O u)) P
+(\lambda (H4: (eq nat (plus n h) i)).(\lambda (_: (eq T x (lift (S (plus n
+h)) O u))).(let H6 \def (eq_ind_r nat i (\lambda (n0: nat).(lt n0 (plus d
+h))) H0 (plus n h) H4) in (le_false d n P H2 (lt_le_S n d (simpl_lt_plus_r h
+n d H6)))))) (subst0_gen_lref u x i (plus n h) H3))))))))))))))) (\lambda (k:
+K).(\lambda (t0: T).(\lambda (H: ((\forall (u: T).(\forall (x: T).(\forall
+(h: nat).(\forall (d: nat).(\forall (i: nat).((le d i) \to ((lt i (plus d h))
+\to ((subst0 i u (lift h d t0) x) \to (\forall (P:
+Prop).P))))))))))).(\lambda (t1: T).(\lambda (H0: ((\forall (u: T).(\forall
+(x: T).(\forall (h: nat).(\forall (d: nat).(\forall (i: nat).((le d i) \to
+((lt i (plus d h)) \to ((subst0 i u (lift h d t1) x) \to (\forall (P:
+Prop).P))))))))))).(\lambda (u: T).(\lambda (x: T).(\lambda (h: nat).(\lambda
+(d: nat).(\lambda (i: nat).(\lambda (H1: (le d i)).(\lambda (H2: (lt i (plus
+d h))).(\lambda (H3: (subst0 i u (lift h d (THead k t0 t1)) x)).(\lambda (P:
+Prop).(let H4 \def (eq_ind T (lift h d (THead k t0 t1)) (\lambda (t2:
+T).(subst0 i u t2 x)) H3 (THead k (lift h d t0) (lift h (s k d) t1))
+(lift_head k t0 t1 h d)) in (or3_ind (ex2 T (\lambda (u2: T).(eq T x (THead k
+u2 (lift h (s k d) t1)))) (\lambda (u2: T).(subst0 i u (lift h d t0) u2)))
+(ex2 T (\lambda (t2: T).(eq T x (THead k (lift h d t0) t2))) (\lambda (t2:
+T).(subst0 (s k i) u (lift h (s k d) t1) t2))) (ex3_2 T T (\lambda (u2:
+T).(\lambda (t2: T).(eq T x (THead k u2 t2)))) (\lambda (u2: T).(\lambda (_:
+T).(subst0 i u (lift h d t0) u2))) (\lambda (_: T).(\lambda (t2: T).(subst0
+(s k i) u (lift h (s k d) t1) t2)))) P (\lambda (H5: (ex2 T (\lambda (u2:
+T).(eq T x (THead k u2 (lift h (s k d) t1)))) (\lambda (u2: T).(subst0 i u
+(lift h d t0) u2)))).(ex2_ind T (\lambda (u2: T).(eq T x (THead k u2 (lift h
+(s k d) t1)))) (\lambda (u2: T).(subst0 i u (lift h d t0) u2)) P (\lambda
+(x0: T).(\lambda (_: (eq T x (THead k x0 (lift h (s k d) t1)))).(\lambda (H7:
+(subst0 i u (lift h d t0) x0)).(H u x0 h d i H1 H2 H7 P)))) H5)) (\lambda
+(H5: (ex2 T (\lambda (t2: T).(eq T x (THead k (lift h d t0) t2))) (\lambda
+(t2: T).(subst0 (s k i) u (lift h (s k d) t1) t2)))).(ex2_ind T (\lambda (t2:
+T).(eq T x (THead k (lift h d t0) t2))) (\lambda (t2: T).(subst0 (s k i) u
+(lift h (s k d) t1) t2)) P (\lambda (x0: T).(\lambda (_: (eq T x (THead k
+(lift h d t0) x0))).(\lambda (H7: (subst0 (s k i) u (lift h (s k d) t1)
+x0)).(H0 u x0 h (s k d) (s k i) (s_le k d i H1) (eq_ind nat (s k (plus d h))
+(\lambda (n: nat).(lt (s k i) n)) (lt_le_S (s k i) (s k (plus d h)) (s_lt k i
+(plus d h) H2)) (plus (s k d) h) (s_plus k d h)) H7 P)))) H5)) (\lambda (H5:
+(ex3_2 T T (\lambda (u2: T).(\lambda (t2: T).(eq T x (THead k u2 t2))))
+(\lambda (u2: T).(\lambda (_: T).(subst0 i u (lift h d t0) u2))) (\lambda (_:
+T).(\lambda (t2: T).(subst0 (s k i) u (lift h (s k d) t1) t2))))).(ex3_2_ind
+T T (\lambda (u2: T).(\lambda (t2: T).(eq T x (THead k u2 t2)))) (\lambda
+(u2: T).(\lambda (_: T).(subst0 i u (lift h d t0) u2))) (\lambda (_:
+T).(\lambda (t2: T).(subst0 (s k i) u (lift h (s k d) t1) t2))) P (\lambda
+(x0: T).(\lambda (x1: T).(\lambda (_: (eq T x (THead k x0 x1))).(\lambda (H7:
+(subst0 i u (lift h d t0) x0)).(\lambda (_: (subst0 (s k i) u (lift h (s k d)
+t1) x1)).(H u x0 h d i H1 H2 H7 P)))))) H5)) (subst0_gen_head k u (lift h d
+t0) (lift h (s k d) t1) x i H4))))))))))))))))) t).
-axiom subst0_gen_lift_ge:
+theorem subst0_gen_lift_ge:
\forall (u: T).(\forall (t1: T).(\forall (x: T).(\forall (i: nat).(\forall
(h: nat).(\forall (d: nat).((subst0 i u (lift h d t1) x) \to ((le (plus d h)
i) \to (ex2 T (\lambda (t2: T).(eq T x (lift h d t2))) (\lambda (t2:
T).(subst0 (minus i h) u t1 t2))))))))))
-.
+\def
+ \lambda (u: T).(\lambda (t1: T).(T_ind (\lambda (t: T).(\forall (x:
+T).(\forall (i: nat).(\forall (h: nat).(\forall (d: nat).((subst0 i u (lift h
+d t) x) \to ((le (plus d h) i) \to (ex2 T (\lambda (t2: T).(eq T x (lift h d
+t2))) (\lambda (t2: T).(subst0 (minus i h) u t t2)))))))))) (\lambda (n:
+nat).(\lambda (x: T).(\lambda (i: nat).(\lambda (h: nat).(\lambda (d:
+nat).(\lambda (H: (subst0 i u (lift h d (TSort n)) x)).(\lambda (_: (le (plus
+d h) i)).(let H1 \def (eq_ind T (lift h d (TSort n)) (\lambda (t: T).(subst0
+i u t x)) H (TSort n) (lift_sort n h d)) in (subst0_gen_sort u x i n H1 (ex2
+T (\lambda (t2: T).(eq T x (lift h d t2))) (\lambda (t2: T).(subst0 (minus i
+h) u (TSort n) t2)))))))))))) (\lambda (n: nat).(\lambda (x: T).(\lambda (i:
+nat).(\lambda (h: nat).(\lambda (d: nat).(\lambda (H: (subst0 i u (lift h d
+(TLRef n)) x)).(\lambda (H0: (le (plus d h) i)).(lt_le_e n d (ex2 T (\lambda
+(t2: T).(eq T x (lift h d t2))) (\lambda (t2: T).(subst0 (minus i h) u (TLRef
+n) t2))) (\lambda (H1: (lt n d)).(let H2 \def (eq_ind T (lift h d (TLRef n))
+(\lambda (t: T).(subst0 i u t x)) H (TLRef n) (lift_lref_lt n h d H1)) in
+(and_ind (eq nat n i) (eq T x (lift (S n) O u)) (ex2 T (\lambda (t2: T).(eq T
+x (lift h d t2))) (\lambda (t2: T).(subst0 (minus i h) u (TLRef n) t2)))
+(\lambda (H3: (eq nat n i)).(\lambda (_: (eq T x (lift (S n) O u))).(let H5
+\def (eq_ind nat n (\lambda (n0: nat).(lt n0 d)) H1 i H3) in (le_false (plus
+d h) i (ex2 T (\lambda (t2: T).(eq T x (lift h d t2))) (\lambda (t2:
+T).(subst0 (minus i h) u (TLRef n) t2))) H0 (le_plus_trans (S i) d h H5)))))
+(subst0_gen_lref u x i n H2)))) (\lambda (H1: (le d n)).(let H2 \def (eq_ind
+T (lift h d (TLRef n)) (\lambda (t: T).(subst0 i u t x)) H (TLRef (plus n h))
+(lift_lref_ge n h d H1)) in (and_ind (eq nat (plus n h) i) (eq T x (lift (S
+(plus n h)) O u)) (ex2 T (\lambda (t2: T).(eq T x (lift h d t2))) (\lambda
+(t2: T).(subst0 (minus i h) u (TLRef n) t2))) (\lambda (H3: (eq nat (plus n
+h) i)).(\lambda (H4: (eq T x (lift (S (plus n h)) O u))).(eq_ind nat (plus n
+h) (\lambda (n0: nat).(ex2 T (\lambda (t2: T).(eq T x (lift h d t2)))
+(\lambda (t2: T).(subst0 (minus n0 h) u (TLRef n) t2)))) (eq_ind_r T (lift (S
+(plus n h)) O u) (\lambda (t: T).(ex2 T (\lambda (t2: T).(eq T t (lift h d
+t2))) (\lambda (t2: T).(subst0 (minus (plus n h) h) u (TLRef n) t2))))
+(eq_ind_r nat n (\lambda (n0: nat).(ex2 T (\lambda (t2: T).(eq T (lift (S
+(plus n h)) O u) (lift h d t2))) (\lambda (t2: T).(subst0 n0 u (TLRef n)
+t2)))) (ex_intro2 T (\lambda (t2: T).(eq T (lift (S (plus n h)) O u) (lift h
+d t2))) (\lambda (t2: T).(subst0 n u (TLRef n) t2)) (lift (S n) O u)
+(eq_ind_r T (lift (plus h (S n)) O u) (\lambda (t: T).(eq T (lift (S (plus n
+h)) O u) t)) (eq_ind_r nat (plus h n) (\lambda (n0: nat).(eq T (lift (S n0) O
+u) (lift (plus h (S n)) O u))) (eq_ind_r nat (plus h (S n)) (\lambda (n0:
+nat).(eq T (lift n0 O u) (lift (plus h (S n)) O u))) (refl_equal T (lift
+(plus h (S n)) O u)) (S (plus h n)) (plus_n_Sm h n)) (plus n h) (plus_comm n
+h)) (lift h d (lift (S n) O u)) (lift_free u (S n) h O d (le_trans d (S n)
+(plus O (S n)) (le_S d n H1) (le_n (plus O (S n)))) (le_O_n d))) (subst0_lref
+u n)) (minus (plus n h) h) (minus_plus_r n h)) x H4) i H3))) (subst0_gen_lref
+u x i (plus n h) H2)))))))))))) (\lambda (k: K).(\lambda (t: T).(\lambda (H:
+((\forall (x: T).(\forall (i: nat).(\forall (h: nat).(\forall (d:
+nat).((subst0 i u (lift h d t) x) \to ((le (plus d h) i) \to (ex2 T (\lambda
+(t2: T).(eq T x (lift h d t2))) (\lambda (t2: T).(subst0 (minus i h) u t
+t2))))))))))).(\lambda (t0: T).(\lambda (H0: ((\forall (x: T).(\forall (i:
+nat).(\forall (h: nat).(\forall (d: nat).((subst0 i u (lift h d t0) x) \to
+((le (plus d h) i) \to (ex2 T (\lambda (t2: T).(eq T x (lift h d t2)))
+(\lambda (t2: T).(subst0 (minus i h) u t0 t2))))))))))).(\lambda (x:
+T).(\lambda (i: nat).(\lambda (h: nat).(\lambda (d: nat).(\lambda (H1:
+(subst0 i u (lift h d (THead k t t0)) x)).(\lambda (H2: (le (plus d h)
+i)).(let H3 \def (eq_ind T (lift h d (THead k t t0)) (\lambda (t2: T).(subst0
+i u t2 x)) H1 (THead k (lift h d t) (lift h (s k d) t0)) (lift_head k t t0 h
+d)) in (or3_ind (ex2 T (\lambda (u2: T).(eq T x (THead k u2 (lift h (s k d)
+t0)))) (\lambda (u2: T).(subst0 i u (lift h d t) u2))) (ex2 T (\lambda (t2:
+T).(eq T x (THead k (lift h d t) t2))) (\lambda (t2: T).(subst0 (s k i) u
+(lift h (s k d) t0) t2))) (ex3_2 T T (\lambda (u2: T).(\lambda (t2: T).(eq T
+x (THead k u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(subst0 i u (lift h d
+t) u2))) (\lambda (_: T).(\lambda (t2: T).(subst0 (s k i) u (lift h (s k d)
+t0) t2)))) (ex2 T (\lambda (t2: T).(eq T x (lift h d t2))) (\lambda (t2:
+T).(subst0 (minus i h) u (THead k t t0) t2))) (\lambda (H4: (ex2 T (\lambda
+(u2: T).(eq T x (THead k u2 (lift h (s k d) t0)))) (\lambda (u2: T).(subst0 i
+u (lift h d t) u2)))).(ex2_ind T (\lambda (u2: T).(eq T x (THead k u2 (lift h
+(s k d) t0)))) (\lambda (u2: T).(subst0 i u (lift h d t) u2)) (ex2 T (\lambda
+(t2: T).(eq T x (lift h d t2))) (\lambda (t2: T).(subst0 (minus i h) u (THead
+k t t0) t2))) (\lambda (x0: T).(\lambda (H5: (eq T x (THead k x0 (lift h (s k
+d) t0)))).(\lambda (H6: (subst0 i u (lift h d t) x0)).(eq_ind_r T (THead k x0
+(lift h (s k d) t0)) (\lambda (t2: T).(ex2 T (\lambda (t3: T).(eq T t2 (lift
+h d t3))) (\lambda (t3: T).(subst0 (minus i h) u (THead k t t0) t3))))
+(ex2_ind T (\lambda (t2: T).(eq T x0 (lift h d t2))) (\lambda (t2: T).(subst0
+(minus i h) u t t2)) (ex2 T (\lambda (t2: T).(eq T (THead k x0 (lift h (s k
+d) t0)) (lift h d t2))) (\lambda (t2: T).(subst0 (minus i h) u (THead k t t0)
+t2))) (\lambda (x1: T).(\lambda (H7: (eq T x0 (lift h d x1))).(\lambda (H8:
+(subst0 (minus i h) u t x1)).(eq_ind_r T (lift h d x1) (\lambda (t2: T).(ex2
+T (\lambda (t3: T).(eq T (THead k t2 (lift h (s k d) t0)) (lift h d t3)))
+(\lambda (t3: T).(subst0 (minus i h) u (THead k t t0) t3)))) (eq_ind T (lift
+h d (THead k x1 t0)) (\lambda (t2: T).(ex2 T (\lambda (t3: T).(eq T t2 (lift
+h d t3))) (\lambda (t3: T).(subst0 (minus i h) u (THead k t t0) t3))))
+(ex_intro2 T (\lambda (t2: T).(eq T (lift h d (THead k x1 t0)) (lift h d
+t2))) (\lambda (t2: T).(subst0 (minus i h) u (THead k t t0) t2)) (THead k x1
+t0) (refl_equal T (lift h d (THead k x1 t0))) (subst0_fst u x1 t (minus i h)
+H8 t0 k)) (THead k (lift h d x1) (lift h (s k d) t0)) (lift_head k x1 t0 h
+d)) x0 H7)))) (H x0 i h d H6 H2)) x H5)))) H4)) (\lambda (H4: (ex2 T (\lambda
+(t2: T).(eq T x (THead k (lift h d t) t2))) (\lambda (t2: T).(subst0 (s k i)
+u (lift h (s k d) t0) t2)))).(ex2_ind T (\lambda (t2: T).(eq T x (THead k
+(lift h d t) t2))) (\lambda (t2: T).(subst0 (s k i) u (lift h (s k d) t0)
+t2)) (ex2 T (\lambda (t2: T).(eq T x (lift h d t2))) (\lambda (t2: T).(subst0
+(minus i h) u (THead k t t0) t2))) (\lambda (x0: T).(\lambda (H5: (eq T x
+(THead k (lift h d t) x0))).(\lambda (H6: (subst0 (s k i) u (lift h (s k d)
+t0) x0)).(eq_ind_r T (THead k (lift h d t) x0) (\lambda (t2: T).(ex2 T
+(\lambda (t3: T).(eq T t2 (lift h d t3))) (\lambda (t3: T).(subst0 (minus i
+h) u (THead k t t0) t3)))) (ex2_ind T (\lambda (t2: T).(eq T x0 (lift h (s k
+d) t2))) (\lambda (t2: T).(subst0 (minus (s k i) h) u t0 t2)) (ex2 T (\lambda
+(t2: T).(eq T (THead k (lift h d t) x0) (lift h d t2))) (\lambda (t2:
+T).(subst0 (minus i h) u (THead k t t0) t2))) (\lambda (x1: T).(\lambda (H7:
+(eq T x0 (lift h (s k d) x1))).(\lambda (H8: (subst0 (minus (s k i) h) u t0
+x1)).(eq_ind_r T (lift h (s k d) x1) (\lambda (t2: T).(ex2 T (\lambda (t3:
+T).(eq T (THead k (lift h d t) t2) (lift h d t3))) (\lambda (t3: T).(subst0
+(minus i h) u (THead k t t0) t3)))) (eq_ind T (lift h d (THead k t x1))
+(\lambda (t2: T).(ex2 T (\lambda (t3: T).(eq T t2 (lift h d t3))) (\lambda
+(t3: T).(subst0 (minus i h) u (THead k t t0) t3)))) (let H9 \def (eq_ind_r
+nat (minus (s k i) h) (\lambda (n: nat).(subst0 n u t0 x1)) H8 (s k (minus i
+h)) (s_minus k i h (le_trans_plus_r d h i H2))) in (ex_intro2 T (\lambda (t2:
+T).(eq T (lift h d (THead k t x1)) (lift h d t2))) (\lambda (t2: T).(subst0
+(minus i h) u (THead k t t0) t2)) (THead k t x1) (refl_equal T (lift h d
+(THead k t x1))) (subst0_snd k u x1 t0 (minus i h) H9 t))) (THead k (lift h d
+t) (lift h (s k d) x1)) (lift_head k t x1 h d)) x0 H7)))) (H0 x0 (s k i) h (s
+k d) H6 (eq_ind nat (s k (plus d h)) (\lambda (n: nat).(le n (s k i))) (s_le
+k (plus d h) i H2) (plus (s k d) h) (s_plus k d h)))) x H5)))) H4)) (\lambda
+(H4: (ex3_2 T T (\lambda (u2: T).(\lambda (t2: T).(eq T x (THead k u2 t2))))
+(\lambda (u2: T).(\lambda (_: T).(subst0 i u (lift h d t) u2))) (\lambda (_:
+T).(\lambda (t2: T).(subst0 (s k i) u (lift h (s k d) t0) t2))))).(ex3_2_ind
+T T (\lambda (u2: T).(\lambda (t2: T).(eq T x (THead k u2 t2)))) (\lambda
+(u2: T).(\lambda (_: T).(subst0 i u (lift h d t) u2))) (\lambda (_:
+T).(\lambda (t2: T).(subst0 (s k i) u (lift h (s k d) t0) t2))) (ex2 T
+(\lambda (t2: T).(eq T x (lift h d t2))) (\lambda (t2: T).(subst0 (minus i h)
+u (THead k t t0) t2))) (\lambda (x0: T).(\lambda (x1: T).(\lambda (H5: (eq T
+x (THead k x0 x1))).(\lambda (H6: (subst0 i u (lift h d t) x0)).(\lambda (H7:
+(subst0 (s k i) u (lift h (s k d) t0) x1)).(eq_ind_r T (THead k x0 x1)
+(\lambda (t2: T).(ex2 T (\lambda (t3: T).(eq T t2 (lift h d t3))) (\lambda
+(t3: T).(subst0 (minus i h) u (THead k t t0) t3)))) (ex2_ind T (\lambda (t2:
+T).(eq T x1 (lift h (s k d) t2))) (\lambda (t2: T).(subst0 (minus (s k i) h)
+u t0 t2)) (ex2 T (\lambda (t2: T).(eq T (THead k x0 x1) (lift h d t2)))
+(\lambda (t2: T).(subst0 (minus i h) u (THead k t t0) t2))) (\lambda (x2:
+T).(\lambda (H8: (eq T x1 (lift h (s k d) x2))).(\lambda (H9: (subst0 (minus
+(s k i) h) u t0 x2)).(ex2_ind T (\lambda (t2: T).(eq T x0 (lift h d t2)))
+(\lambda (t2: T).(subst0 (minus i h) u t t2)) (ex2 T (\lambda (t2: T).(eq T
+(THead k x0 x1) (lift h d t2))) (\lambda (t2: T).(subst0 (minus i h) u (THead
+k t t0) t2))) (\lambda (x3: T).(\lambda (H10: (eq T x0 (lift h d
+x3))).(\lambda (H11: (subst0 (minus i h) u t x3)).(eq_ind_r T (lift h d x3)
+(\lambda (t2: T).(ex2 T (\lambda (t3: T).(eq T (THead k t2 x1) (lift h d
+t3))) (\lambda (t3: T).(subst0 (minus i h) u (THead k t t0) t3)))) (eq_ind_r
+T (lift h (s k d) x2) (\lambda (t2: T).(ex2 T (\lambda (t3: T).(eq T (THead k
+(lift h d x3) t2) (lift h d t3))) (\lambda (t3: T).(subst0 (minus i h) u
+(THead k t t0) t3)))) (eq_ind T (lift h d (THead k x3 x2)) (\lambda (t2:
+T).(ex2 T (\lambda (t3: T).(eq T t2 (lift h d t3))) (\lambda (t3: T).(subst0
+(minus i h) u (THead k t t0) t3)))) (let H12 \def (eq_ind_r nat (minus (s k
+i) h) (\lambda (n: nat).(subst0 n u t0 x2)) H9 (s k (minus i h)) (s_minus k i
+h (le_trans_plus_r d h i H2))) in (ex_intro2 T (\lambda (t2: T).(eq T (lift h
+d (THead k x3 x2)) (lift h d t2))) (\lambda (t2: T).(subst0 (minus i h) u
+(THead k t t0) t2)) (THead k x3 x2) (refl_equal T (lift h d (THead k x3 x2)))
+(subst0_both u t x3 (minus i h) H11 k t0 x2 H12))) (THead k (lift h d x3)
+(lift h (s k d) x2)) (lift_head k x3 x2 h d)) x1 H8) x0 H10)))) (H x0 i h d
+H6 H2))))) (H0 x1 (s k i) h (s k d) H7 (eq_ind nat (s k (plus d h)) (\lambda
+(n: nat).(le n (s k i))) (s_le k (plus d h) i H2) (plus (s k d) h) (s_plus k
+d h)))) x H5)))))) H4)) (subst0_gen_head k u (lift h d t) (lift h (s k d) t0)
+x i H3)))))))))))))) t1)).