case Left.
by H3, H we proved
([[ if eqb 0 O then f[ FBot/x ] else (f[ FTop/x ]) ]]_v = [[ f ]]_v) (H4).
- using H4 we proved ([[ f[FBot/x ] ]]_v = [[ f ]]_v) (H5).
- by H3, 1 we proved
+ by H4 we proved ([[ f[FBot/x ] ]]_v = [[ f ]]_v) (H5).
+ by H3, H1 we proved
([[ if eqb 0 O then f1[ FBot/x ] else (f1[ FTop/x ]) ]]_v = [[ f1 ]]_v) (H6).
- using H6 we proved ([[ f1[FBot/x ] ]]_v = [[ f1 ]]_v) (H7).
+ by H6 we proved ([[ f1[FBot/x ] ]]_v = [[ f1 ]]_v) (H7).
conclude
([[ if eqb [[ FAtom x ]]_v O then ((FAnd f f1)[ FBot/x ]) else ((FAnd f f1)[ FTop/x ]) ]]_v)
= ([[ if eqb 0 O then ((FAnd f f1)[ FBot/x ]) else ((FAnd f f1)[ FTop/x ]) ]]_v) by H3.
case Right.
by H3, H we proved
([[ if eqb 1 O then f[ FBot/x ] else (f[ FTop/x ]) ]]_v = [[ f ]]_v) (H4).
- using H4 we proved ([[ f[FTop/x ] ]]_v = [[ f ]]_v) (H5).
- by H3, 1 we proved
+ by H4 we proved ([[ f[FTop/x ] ]]_v = [[ f ]]_v) (H5).
+ by H3, H1 we proved
([[ if eqb 1 O then f1[ FBot/x ] else (f1[ FTop/x ]) ]]_v = [[ f1 ]]_v) (H6).
- using H6 we proved ([[ f1[FTop/x ] ]]_v = [[ f1 ]]_v) (H7).
+ by H6 we proved ([[ f1[FTop/x ] ]]_v = [[ f1 ]]_v) (H7).
conclude
([[ if eqb [[ FAtom x ]]_v O then ((FAnd f f1)[ FBot/x ]) else ((FAnd f f1)[ FTop/x ]) ]]_v)
= ([[ if eqb 1 O then ((FAnd f f1)[ FBot/x ]) else ((FAnd f f1)[ FTop/x ]) ]]_v) by H3.
case Left.
by H3, H we proved
([[ if eqb 0 O then f[ FBot/x ] else (f[ FTop/x ]) ]]_v = [[ f ]]_v) (H4).
- using H4 we proved ([[ f[FBot/x ] ]]_v = [[ f ]]_v) (H5).
- by H3, 1 we proved
+ by H4 we proved ([[ f[FBot/x ] ]]_v = [[ f ]]_v) (H5).
+ by H3, H1 we proved
([[ if eqb 0 O then f1[ FBot/x ] else (f1[ FTop/x ]) ]]_v = [[ f1 ]]_v) (H6).
- using H6 we proved ([[ f1[FBot/x ] ]]_v = [[ f1 ]]_v) (H7).
+ by H6 we proved ([[ f1[FBot/x ] ]]_v = [[ f1 ]]_v) (H7).
conclude
([[ if eqb [[ FAtom x ]]_v O then ((FOr f f1)[ FBot/x ]) else ((FOr f f1)[ FTop/x ]) ]]_v)
= ([[ if eqb 0 O then ((FOr f f1)[ FBot/x ]) else ((FOr f f1)[ FTop/x ]) ]]_v) by H3.
case Right.
by H3, H we proved
([[ if eqb 1 O then f[ FBot/x ] else (f[ FTop/x ]) ]]_v = [[ f ]]_v) (H4).
- using H4 we proved ([[ f[FTop/x ] ]]_v = [[ f ]]_v) (H5).
- by H3, 1 we proved
+ by H4 we proved ([[ f[FTop/x ] ]]_v = [[ f ]]_v) (H5).
+ by H3, H1 we proved
([[ if eqb 1 O then f1[ FBot/x ] else (f1[ FTop/x ]) ]]_v = [[ f1 ]]_v) (H6).
- using H6 we proved ([[ f1[FTop/x ] ]]_v = [[ f1 ]]_v) (H7).
+ by H6 we proved ([[ f1[FTop/x ] ]]_v = [[ f1 ]]_v) (H7).
conclude
([[ if eqb [[ FAtom x ]]_v O then ((FOr f f1)[ FBot/x ]) else ((FOr f f1)[ FTop/x ]) ]]_v)
= ([[ if eqb 1 O then ((FOr f f1)[ FBot/x ]) else ((FOr f f1)[ FTop/x ]) ]]_v) by H3.
case Left.
by H3, H we proved
([[ if eqb 0 O then f[ FBot/x ] else (f[ FTop/x ]) ]]_v = [[ f ]]_v) (H4).
- using H4 we proved ([[ f[FBot/x ] ]]_v = [[ f ]]_v) (H5).
- by H3, 1 we proved
+ by H4 we proved ([[ f[FBot/x ] ]]_v = [[ f ]]_v) (H5).
+ by H3, H1 we proved
([[ if eqb 0 O then f1[ FBot/x ] else (f1[ FTop/x ]) ]]_v = [[ f1 ]]_v) (H6).
- using H6 we proved ([[ f1[FBot/x ] ]]_v = [[ f1 ]]_v) (H7).
+ by H6 we proved ([[ f1[FBot/x ] ]]_v = [[ f1 ]]_v) (H7).
conclude
([[ if eqb [[ FAtom x ]]_v O then ((FImpl f f1)[ FBot/x ]) else ((FImpl f f1)[ FTop/x ]) ]]_v)
= ([[ if eqb 0 O then ((FImpl f f1)[ FBot/x ]) else ((FImpl f f1)[ FTop/x ]) ]]_v) by H3.
case Right.
by H3, H we proved
([[ if eqb 1 O then f[ FBot/x ] else (f[ FTop/x ]) ]]_v = [[ f ]]_v) (H4).
- using H4 we proved ([[ f[FTop/x ] ]]_v = [[ f ]]_v) (H5).
- by H3, 1 we proved
+ by H4 we proved ([[ f[FTop/x ] ]]_v = [[ f ]]_v) (H5).
+ by H3, H1 we proved
([[ if eqb 1 O then f1[ FBot/x ] else (f1[ FTop/x ]) ]]_v = [[ f1 ]]_v) (H6).
- using H6 we proved ([[ f1[FTop/x ] ]]_v = [[ f1 ]]_v) (H7).
+ by H6 we proved ([[ f1[FTop/x ] ]]_v = [[ f1 ]]_v) (H7).
conclude
([[ if eqb [[ FAtom x ]]_v O then ((FImpl f f1)[ FBot/x ]) else ((FImpl f f1)[ FTop/x ]) ]]_v)
= ([[ if eqb 1 O then ((FImpl f f1)[ FBot/x ]) else ((FImpl f f1)[ FTop/x ]) ]]_v) by H3.
case Left.
by H1, H we proved
([[ if eqb 0 O then f[ FBot/x ] else (f[ FTop/x ]) ]]_v = [[ f ]]_v) (H4).
- using H4 we proved ([[ f[FBot/x ] ]]_v = [[ f ]]_v) (H5).
+ by H4 we proved ([[ f[FBot/x ] ]]_v = [[ f ]]_v) (H5).
conclude
([[ if eqb [[ FAtom x ]]_v O then ((FNot f)[ FBot/x ]) else ((FNot f)[ FTop/x ]) ]]_v)
= ([[ if eqb 0 O then ((FNot f)[ FBot/x ]) else ((FNot f)[ FTop/x ]) ]]_v) by H1.
case Right.
by H1, H we proved
([[ if eqb 1 O then f[ FBot/x ] else (f[ FTop/x ]) ]]_v = [[ f ]]_v) (H4).
- using H4 we proved ([[ f[FTop/x ] ]]_v = [[ f ]]_v) (H5).
+ by H4 we proved ([[ f[FTop/x ] ]]_v = [[ f ]]_v) (H5).
conclude
([[ if eqb [[ FAtom x ]]_v O then ((FNot f)[ FBot/x ]) else ((FNot f)[ FTop/x ]) ]]_v)
= ([[ if eqb 1 O then ((FNot f)[ FBot/x ]) else ((FNot f)[ FTop/x ]) ]]_v) by H1.