open Inference;;
open Utils;;
-let check_table t l =
- List.fold_left
- (fun b (_,eq) -> b && (Indexing.in_index t eq)) true l
-
-
(* set to false to disable paramodulation inside auto_tac *)
let connect_to_auto = true;;
(* equality-selection related globals *)
let use_fullred = ref true;;
-let weight_age_ratio = ref 4 (* 5 *);; (* settable by the user *)
+let weight_age_ratio = ref 6 (* 5 *);; (* settable by the user *)
let weight_age_counter = ref !weight_age_ratio ;;
let symbols_ratio = ref 0 (* 3 *);;
let symbols_counter = ref 0;;
let maxdepth = ref 3;;
let maxwidth = ref 3;;
-let test eq = false
-(*
- let (_,(_,_,(ty,left,right,_),m1)) = eq in
- let actual =
- (Inference.metas_of_term left)@(Inference.metas_of_term right)
- in
- let m = List.filter (fun (i, _, _) -> List.mem i actual) m1 in
- m <> m1
-;; *)
-
type result =
| ParamodulationFailure
| ParamodulationSuccess of (Inference.proof * Cic.metasenv) option
| res -> res
end
-(*
-module OrderedEquality = struct
- type t = Inference.equality
-
- let minor eq =
- let w, _, (ty, left, right, o), _ = eq in
- match o with
- | Lt -> Some left
- | Le -> assert false
- | Gt -> Some right
- | Ge -> assert false
- | Eq
- | Incomparable -> None
-
- let compare eq1 eq2 =
- let w1, _, (ty, left, right, o1), m1 = eq1
- and w2, _, (ty', left', right', o2), m2 = eq2 in
- match Pervasives.compare w1 w2 with
- | 0 ->
- (match minor eq1, minor eq2 with
- | Some t1, Some t2 ->
- fst (Utils.weight_of_term t1) - fst (Utils.weight_of_term t2)
- | Some _, None -> -1
- | None, Some _ -> 1
- | _,_ ->
- (List.length m2) - (List.length m1) )
- | res -> res
-
- let compare eq1 eq2 =
- match compare eq1 eq2 with
- 0 -> Pervasives.compare eq1 eq2
- | res -> res
-end
-*)
-
module EqualitySet = Set.Make(OrderedEquality);;
exception Empty_list;;
let passive_is_empty = function
- | ([], _), ([], _), _ -> true
+ | ([], _), _ -> true
| _ -> false
;;
-let size_of_passive ((_, ns), (_, ps), _) =
- (EqualitySet.cardinal ns) + (EqualitySet.cardinal ps)
+let size_of_passive ((passive_list, ps), _) = List.length passive_list
+(* EqualitySet.cardinal ps *)
;;
-let size_of_active (active_list, _) =
- List.length active_list
+let size_of_active (active_list, _) = List.length active_list
;;
let age_factor = 0.01;;
-let min_elt weight l =
- fst
- (match l with
- [] -> raise Empty_list
- | a::tl ->
- let wa = float_of_int (weight a) in
- let x = ref 0. in
- List.fold_left
- (fun (current,w) arg ->
- x:=!x +. 1.;
- let w1 = weight arg in
- let wa = (float_of_int w1) +. !x *. age_factor in
- if wa < w then (arg,wa) else (current,w))
- (a,wa) tl)
-;;
-
-(*
-let compare eq1 eq2 =
- let w1, _, (ty, left, right, _), m1, _ = eq1 in
- let w2, _, (ty', left', right', _), m2, _ = eq2 in
- match Pervasives.compare w1 w2 with
- | 0 -> (List.length m1) - (List.length m2)
- | res -> res
-;;
-*)
-
(**
selects one equality from passive. The selection strategy is a combination
of weight, age and goal-similarity
*)
-let rec select env goals passive (active, _) =
+
+let rec select env goals passive =
processed_clauses := !processed_clauses + 1;
let goal =
match (List.rev goals) with (_, goal::_)::_ -> goal | _ -> assert false
in
- let (neg_list, neg_set), (pos_list, pos_set), passive_table = passive in
- let remove eq l =
- List.filter (fun e -> e <> eq) l
- in
+ let (pos_list, pos_set), passive_table = passive in
+ let remove eq l = List.filter (fun e -> e <> eq) l in
if !weight_age_ratio > 0 then
weight_age_counter := !weight_age_counter - 1;
match !weight_age_counter with
| 0 -> (
weight_age_counter := !weight_age_ratio;
- match neg_list, pos_list with
- | hd::tl, pos ->
- (* Negatives aren't indexed, no need to remove them... *)
- (Negative, hd),
- ((tl, EqualitySet.remove hd neg_set), (pos, pos_set), passive_table)
- | [], (hd:EqualitySet.elt)::tl ->
+ match pos_list with
+ | (hd:EqualitySet.elt)::tl ->
let passive_table =
Indexing.remove_index passive_table hd
- in (Positive, hd),
- (([], neg_set), (tl, EqualitySet.remove hd pos_set), passive_table)
- | _, _ -> assert false
- )
- | _ when (!symbols_counter > 0) && (EqualitySet.is_empty neg_set) ->
+ in hd, ((tl, EqualitySet.remove hd pos_set), passive_table)
+ | _ -> assert false)
+ | _ when (!symbols_counter > 0) ->
(symbols_counter := !symbols_counter - 1;
let cardinality map =
TermMap.fold (fun k v res -> res + v) map 0
let passive_table =
Indexing.remove_index passive_table current
in
- (Positive, current),
- (([], neg_set),
- (remove current pos_list, EqualitySet.remove current pos_set),
- passive_table)
- )
+ current,
+ ((remove current pos_list, EqualitySet.remove current pos_set),
+ passive_table))
| _ ->
symbols_counter := !symbols_ratio;
- let set_selection set = EqualitySet.min_elt set in
- (* let set_selection l = min_elt (fun (w,_,_,_) -> w) l in *)
- if EqualitySet.is_empty neg_set then
- let current = set_selection pos_set in
- let passive =
- (neg_list, neg_set),
- (remove current pos_list, EqualitySet.remove current pos_set),
- Indexing.remove_index passive_table current
- in
- (Positive, current), passive
- else
- let current = set_selection neg_set in
- let passive =
- (remove current neg_list, EqualitySet.remove current neg_set),
- (pos_list, pos_set),
- passive_table
- in
- (Negative, current), passive
+ let current = EqualitySet.min_elt pos_set in
+ let passive_table =
+ Indexing.remove_index passive_table current
+ in
+ current,
+ ((remove current pos_list, EqualitySet.remove current pos_set),
+ passive_table)
;;
(* initializes the passive set of equalities *)
-let make_passive neg pos =
+let make_passive pos =
let set_of equalities =
List.fold_left (fun s e -> EqualitySet.add e s) EqualitySet.empty equalities
in
let table =
List.fold_left (fun tbl e -> Indexing.index tbl e) Indexing.empty pos
in
- (neg, set_of neg),
(pos, set_of pos),
table
;;
;;
-(* adds to passive a list of equalities: new_neg is a list of negative
- equalities, new_pos a list of positive equalities *)
-let add_to_passive passive (new_neg, new_pos) =
- let (neg_list, neg_set), (pos_list, pos_set), table = passive in
+(* adds to passive a list of equalities new_pos *)
+let add_to_passive passive new_pos =
+ let (pos_list, pos_set), table = passive in
let ok set equality = not (EqualitySet.mem equality set) in
- let neg = List.filter (ok neg_set) new_neg
- and pos = List.filter (ok pos_set) new_pos in
+ let pos = List.filter (ok pos_set) new_pos in
let table =
List.fold_left (fun tbl e -> Indexing.index tbl e) table pos
in
let add set equalities =
List.fold_left (fun s e -> EqualitySet.add e s) set equalities
in
- (neg @ neg_list, add neg_set neg),
(pos_list @ pos, add pos_set pos),
table
;;
-
+(* TODO *)
(* removes from passive equalities that are estimated impossible to activate
within the current time limit *)
let prune_passive howmany (active, _) passive =
- let (nl, ns), (pl, ps), tbl = passive in
+ let (pl, ps), tbl = passive in
let howmany = float_of_int howmany
and ratio = float_of_int !weight_age_ratio in
let round v =
and in_age = round (howmany /. (ratio +. 1.)) in
debug_print
(lazy (Printf.sprintf "in_weight: %d, in_age: %d\n" in_weight in_age));
- let symbols, card =
- match active with
- | (Negative, e)::_ ->
- let symbols = symbols_of_equality e in
- let card = TermMap.fold (fun k v res -> res + v) symbols 0 in
- Some symbols, card
- | _ -> None, 0
+ let symbols, card = None, 0
in
let counter = ref !symbols_ratio in
- let rec pickw w ns ps =
+ let rec pickw w ps =
if w > 0 then
- if not (EqualitySet.is_empty ns) then
- let e = EqualitySet.min_elt ns in
- let ns', ps = pickw (w-1) (EqualitySet.remove e ns) ps in
- EqualitySet.add e ns', ps
- else if !counter > 0 then
+ if !counter > 0 then
let _ =
counter := !counter - 1;
- if !counter = 0 then counter := !symbols_ratio
- in
- match symbols with
- | None ->
- let e = EqualitySet.min_elt ps in
- let ns, ps' = pickw (w-1) ns (EqualitySet.remove e ps) in
- ns, EqualitySet.add e ps'
- | Some symbols ->
- let foldfun k v (r1, r2) =
- if TermMap.mem k symbols then
- let c = TermMap.find k symbols in
- let c1 = abs (c - v) in
- let c2 = v - c1 in
- r1 + c2, r2 + c1
- else
- r1, r2 + v
- in
- let f equality (i, e) =
- let common, others =
- TermMap.fold foldfun (symbols_of_equality equality) (0, 0)
- in
- let c = others + (abs (common - card)) in
- if c < i then (c, equality)
- else (i, e)
- in
- let e1 = EqualitySet.min_elt ps in
- let initial =
- let common, others =
- TermMap.fold foldfun (symbols_of_equality e1) (0, 0)
- in
- (others + (abs (common - card))), e1
- in
- let _, e = EqualitySet.fold f ps initial in
- let ns, ps' = pickw (w-1) ns (EqualitySet.remove e ps) in
- ns, EqualitySet.add e ps'
+ if !counter = 0 then counter := !symbols_ratio in
+ let e = EqualitySet.min_elt ps in
+ let ps' = pickw (w-1) (EqualitySet.remove e ps) in
+ EqualitySet.add e ps'
else
let e = EqualitySet.min_elt ps in
- let ns, ps' = pickw (w-1) ns (EqualitySet.remove e ps) in
- ns, EqualitySet.add e ps'
+ let ps' = pickw (w-1) (EqualitySet.remove e ps) in
+ EqualitySet.add e ps'
else
- EqualitySet.empty, EqualitySet.empty
+ EqualitySet.empty
in
- let ns, ps = pickw in_weight ns ps in
+ let ps = pickw in_weight ps in
let rec picka w s l =
if w > 0 then
match l with
else
0, s, l
in
- let in_age, ns, nl = picka in_age ns nl in
let _, ps, pl = picka in_age ps pl in
if not (EqualitySet.is_empty ps) then
maximal_retained_equality := Some (EqualitySet.max_elt ps);
EqualitySet.fold
(fun e tbl -> Indexing.index tbl e) ps Indexing.empty
in
- (nl, ns), (pl, ps), tbl
+ (pl, ps), tbl
;;
(** inference of new equalities between current and some in active *)
-let infer env sign current (active_list, active_table) =
+let infer env current ((active_list:Inference.equality list), active_table) =
let (_,c,_) = env in
if Utils.debug_metas then
(ignore(Indexing.check_target c current "infer1");
- ignore(List.map (function (_,current) -> Indexing.check_target c current "infer2") active_list));
- let new_neg, new_pos =
- match sign with
- | Negative ->
- let maxm, res =
- Indexing.superposition_left !maxmeta env active_table current in
- if Utils.debug_metas then
- ignore(List.map
- (function current ->
- Indexing.check_target c current "sup-1") res);
- maxmeta := maxm;
- res, []
- | Positive ->
- let maxm, res =
- Indexing.superposition_right !maxmeta env active_table current in
- if Utils.debug_metas then
- ignore(List.map
- (function current ->
- Indexing.check_target c current "sup0") res);
- maxmeta := maxm;
- let rec infer_positive table = function
- | [] -> [], []
- | (Negative, equality)::tl ->
- let maxm, res =
- Indexing.superposition_left !maxmeta env table equality in
- maxmeta := maxm;
- if Utils.debug_metas then
- ignore(List.map
- (function current ->
- Indexing.check_target c current "supl") res);
- let neg, pos = infer_positive table tl in
- res @ neg, pos
- | (Positive, equality)::tl ->
- let maxm, res =
- Indexing.superposition_right !maxmeta env table equality in
+ ignore(List.map (function current -> Indexing.check_target c current "infer2") active_list));
+ let new_pos =
+ let maxm, res =
+ Indexing.superposition_right !maxmeta env active_table current in
+ if Utils.debug_metas then
+ ignore(List.map
+ (function current ->
+ Indexing.check_target c current "sup0") res);
+ maxmeta := maxm;
+ let rec infer_positive table = function
+ | [] -> []
+ | equality::tl ->
+ let maxm, res =
+ Indexing.superposition_right !maxmeta env table equality in
maxmeta := maxm;
- if Utils.debug_metas then
- ignore
- (List.map
- (function current ->
- Indexing.check_target c current "sup2") res);
- let neg, pos = infer_positive table tl in
- neg, res @ pos
- in
- let maxm, copy_of_current = Inference.fix_metas !maxmeta current in
- maxmeta := maxm;
- let curr_table = Indexing.index Indexing.empty current in
- let neg, pos =
- infer_positive curr_table ((sign,copy_of_current)::active_list)
- in
- if Utils.debug_metas then
- ignore(List.map
+ if Utils.debug_metas then
+ ignore
+ (List.map
(function current ->
- Indexing.check_target c current "sup3") pos);
- neg, res @ pos
- in
- derived_clauses := !derived_clauses + (List.length new_neg) +
- (List.length new_pos);
- match !maximal_retained_equality with
- | None ->
+ Indexing.check_target c current "sup2") res);
+ let pos = infer_positive table tl in
+ res @ pos
+ in
+ let maxm, copy_of_current = Inference.fix_metas !maxmeta current in
+ maxmeta := maxm;
+ let curr_table = Indexing.index Indexing.empty current in
+ let pos = infer_positive curr_table (copy_of_current::active_list)
+ in
if Utils.debug_metas then
- (ignore(List.map
- (function current ->
- Indexing.check_target c current "sup4") new_pos);
ignore(List.map
(function current ->
- Indexing.check_target c current "sup5") new_neg));
- new_neg, new_pos
- | Some eq ->
+ Indexing.check_target c current "sup3") pos);
+ res @ pos
+ in
+ derived_clauses := !derived_clauses + (List.length new_pos);
+ match !maximal_retained_equality with
+ | None -> new_pos
+ | Some eq ->
ignore(assert false);
(* if we have a maximal_retained_equality, we can discard all equalities
"greater" than it, as they will never be reached... An equality is
greater than maximal_retained_equality if it is bigger
wrt. OrderedEquality.compare and it is less similar than
maximal_retained_equality to the current goal *)
- let symbols, card =
- match active_list with
- | (Negative, e)::_ ->
- let symbols = symbols_of_equality e in
- let card = TermMap.fold (fun k v res -> res + v) symbols 0 in
- Some symbols, card
- | _ -> None, 0
- in
- let new_pos =
- match symbols with
- | None ->
- List.filter (fun e -> OrderedEquality.compare e eq <= 0) new_pos
- | Some symbols ->
- let filterfun e =
- if OrderedEquality.compare e eq <= 0 then
- true
- else
- let foldfun k v (r1, r2) =
- if TermMap.mem k symbols then
- let c = TermMap.find k symbols in
- let c1 = abs (c - v) in
- let c2 = v - c1 in
- r1 + c2, r2 + c1
- else
- r1, r2 + v
- in
- let initial =
- let common, others =
- TermMap.fold foldfun (symbols_of_equality eq) (0, 0) in
- others + (abs (common - card))
- in
- let common, others =
- TermMap.fold foldfun (symbols_of_equality e) (0, 0) in
- let c = others + (abs (common - card)) in
- if c < initial then true else false
- in
- List.filter filterfun new_pos
- in
- new_neg, new_pos
-;;
-
-
-let contains_empty env (negative, positive) =
- let metasenv, context, ugraph = env in
- try
- let found =
- List.find
- (fun (w, proof, (ty, left, right, ordering), m) ->
- fst (CicReduction.are_convertible context left right ugraph))
- negative
- in
- true, Some found
- with Not_found ->
- false, None
+ List.filter (fun e -> OrderedEquality.compare e eq <= 0) new_pos
;;
+(* buttare via sign *)
(** simplifies current using active and passive *)
-let forward_simplify env (sign, current) ?passive (active_list, active_table) =
+let forward_simplify env (sign,current) ?passive (active_list, active_table) =
let _, context, _ = env in
- let pl, passive_table =
+ let passive_table =
match passive with
- | None -> [], None
- | Some ((pn, _), (pp, _), pt) ->
- let pn = List.map (fun e -> (Negative, e)) pn
- and pp = List.map (fun e -> (Positive, e)) pp in
- pn @ pp, Some pt
+ | None -> None
+ | Some ((_, _), pt) -> Some pt
in
- let all = if pl = [] then active_list else active_list @ pl in
-
let demodulate table current =
let newmeta, newcurrent =
Indexing.demodulation_equality !maxmeta env table sign current in
maxmeta := newmeta;
if is_identity env newcurrent then
- if sign = Negative then Some (sign, newcurrent)
- else (
(* debug_print *)
(* (lazy *)
(* (Printf.sprintf "\ncurrent was: %s\nnewcurrent is: %s\n" *)
(* (String.concat "\n" *)
(* (List.map (fun (_, e) -> (string_of_equality e)) active_list)))); *)
None
- )
else
- Some (sign, newcurrent)
+ Some newcurrent
in
let rec demod current =
if Utils.debug_metas then
ignore (Indexing.check_target context current "demod0");
let res = demodulate active_table current in
if Utils.debug_metas then
- ignore ((function None -> () | Some (_,x) ->
+ ignore ((function None -> () | Some x ->
ignore (Indexing.check_target context x "demod1");()) res);
match res with
| None -> None
- | Some (sign, newcurrent) ->
+ | Some newcurrent ->
match passive_table with
| None -> res
| Some passive_table ->
match demodulate passive_table newcurrent with
| None -> None
- | Some (sign,newnewcurrent) ->
+ | Some newnewcurrent ->
if newcurrent <> newnewcurrent then
demod newnewcurrent
- else Some (sign,newnewcurrent)
+ else Some newnewcurrent
in
let res = demod current in
match res with
| None -> None
- | Some (Negative, c) ->
- let ok = not (
- List.exists
- (fun (s, eq) -> s = Negative && meta_convertibility_eq eq c)
- all)
- in
- if ok then res else None
- | Some (Positive, c) ->
+ | Some c ->
if Indexing.in_index active_table c then
None
else
(** simplifies new using active and passive *)
-let forward_simplify_new env (new_neg, new_pos) ?passive active =
+let forward_simplify_new env new_pos ?passive active =
if Utils.debug_metas then
begin
let m,c,u = env in
- ignore(List.map
- (fun current ->
- Indexing.check_target c current "forward new neg") new_neg);
ignore(List.map
(fun current -> Indexing.check_target c current "forward new pos")
new_pos;)
let t1 = Unix.gettimeofday () in
let active_list, active_table = active in
- let pl, passive_table =
+ let passive_table =
match passive with
- | None -> [], None
- | Some ((pn, _), (pp, _), pt) ->
- let pn = List.map (fun e -> (Negative, e)) pn
- and pp = List.map (fun e -> (Positive, e)) pp in
- pn @ pp, Some pt
+ | None -> None
+ | Some ((_, _), pt) -> Some pt
in
-
let t2 = Unix.gettimeofday () in
fs_time_info.build_all <- fs_time_info.build_all +. (t2 -. t1);
newtarget
in
let t1 = Unix.gettimeofday () in
-
- let new_neg, new_pos =
- let new_neg = List.map (demodulate Negative active_table) new_neg
- and new_pos = List.map (demodulate Positive active_table) new_pos in
- new_neg,new_pos
-(* PROVA
- match passive_table with
- | None -> new_neg, new_pos
- | Some passive_table ->
- List.map (demodulate Negative passive_table) new_neg,
- List.map (demodulate Positive passive_table) new_pos *)
+ (* we could also demodulate using passive. Currently we don't *)
+ let new_pos =
+ List.map (demodulate Positive active_table) new_pos
in
-
let t2 = Unix.gettimeofday () in
fs_time_info.demodulate <- fs_time_info.demodulate +. (t2 -. t1);
not ((Indexing.in_index active_table e) ||
(Indexing.in_index passive_table e)))
in
- new_neg, List.filter subs (List.filter is_duplicate new_pos)
+ List.filter subs (List.filter is_duplicate new_pos)
;;
(** simplifies a goal with equalities in active and passive *)
let rec simplify_goal env goal ?passive (active_list, active_table) =
- let pl, passive_table =
+ let passive_table =
match passive with
- | None -> [], None
- | Some ((pn, _), (pp, _), pt) ->
- let pn = List.map (fun e -> (Negative, e)) pn
- and pp = List.map (fun e -> (Positive, e)) pp in
- pn @ pp, Some pt
+ | None -> None
+ | Some ((_, _), pt) -> Some pt
in
let demodulate table goal =
let active_list, active_table = active in
let active_list, newa =
List.fold_right
- (fun (s, equality) (res, newn) ->
+ (fun equality (res, newn) ->
let ew, _, _, _ = equality in
if ew < min_weight then
- (s, equality)::res, newn
+ equality::res, newn
else
- match forward_simplify env (s, equality) (new_pos, new_table) with
+ match forward_simplify env (Utils.Positive, equality) (new_pos, new_table) with
| None -> res, newn
- | Some (s, e) ->
+ | Some e ->
if equality = e then
- (s, e)::res, newn
+ e::res, newn
else
- res, (s, e)::newn)
+ res, e::newn)
active_list ([], [])
in
let find eq1 where =
- List.exists (fun (s, e) -> meta_convertibility_eq eq1 e) where
+ List.exists (meta_convertibility_eq eq1) where
in
let active, newa =
List.fold_right
- (fun (s, eq) (res, tbl) ->
- if List.mem (s, eq) res then
+ (fun eq (res, tbl) ->
+ if List.mem eq res then
res, tbl
else if (is_identity env eq) || (find eq res) then (
res, tbl
)
else
- (s, eq)::res, if s = Negative then tbl else Indexing.index tbl eq)
+ eq::res, Indexing.index tbl eq)
active_list ([], Indexing.empty),
List.fold_right
- (fun (s, eq) (n, p) ->
- if (s <> Negative) && (is_identity env eq) then (
- (n, p)
- ) else
- if s = Negative then eq::n, p
- else n, eq::p)
- newa ([], [])
+ (fun eq p ->
+ if (is_identity env eq) then p
+ else eq::p)
+ newa []
in
match newa with
- | [], [] -> active, None
+ | [] -> active, None
| _ -> active, Some newa
;;
(** simplifies passive using new *)
let backward_simplify_passive env new_pos new_table min_weight passive =
- let (nl, ns), (pl, ps), passive_table = passive in
+ let (pl, ps), passive_table = passive in
let f sign equality (resl, ress, newn) =
let ew, _, _, _ = equality in
if ew < min_weight then
else
match forward_simplify env (sign, equality) (new_pos, new_table) with
| None -> resl, EqualitySet.remove equality ress, newn
- | Some (s, e) ->
+ | Some e ->
if equality = e then
equality::resl, ress, newn
else
let ress = EqualitySet.remove equality ress in
- resl, ress, e::newn
+ resl, ress, e::newn
in
- let nl, ns, newn = List.fold_right (f Negative) nl ([], ns, [])
- and pl, ps, newp = List.fold_right (f Positive) pl ([], ps, []) in
+ let pl, ps, newp = List.fold_right (f Positive) pl ([], ps, []) in
let passive_table =
List.fold_left
(fun tbl e -> Indexing.index tbl e) Indexing.empty pl
in
- match newn, newp with
- | [], [] -> ((nl, ns), (pl, ps), passive_table), None
- | _, _ -> ((nl, ns), (pl, ps), passive_table), Some (newn, newp)
+ match newp with
+ | [] -> ((pl, ps), passive_table), None
+ | _ -> ((pl, ps), passive_table), Some (newp)
;;
List.fold_left
(fun (l, t, w) e ->
let ew, _, _, _ = e in
- (Positive, e)::l, Indexing.index t e, min ew w)
- ([], Indexing.empty, 1000000) (snd new')
+ e::l, Indexing.index t e, min ew w)
+ ([], Indexing.empty, 1000000) new'
in
let active, newa =
backward_simplify_active env new_pos new_table min_weight active in
match passive with
| None ->
- active, (make_passive [] []), newa, None
+ active, (make_passive []), newa, None
| Some passive ->
active, passive, newa, None
(* prova
List.fold_left
(fun (l, t, w) e ->
let ew, _, _, _ = e in
- (Positive, e)::l, Indexing.index t e, min ew w)
+ e::l, Indexing.index t e, min ew w)
([], Indexing.empty, 1000000) (snd new')
in
List.fold_left
- (fun (n,p) (s,c) ->
- let neg,pos = infer env s c (new_pos,new_table) in
- neg@n,pos@p)
- ([],[]) given
+ (fun p c ->
+ let pos = infer env c (new_pos,new_table) in
+ pos@p)
+ [] given
;;
let is_commutative_law eq =
- let w, proof, (eq_ty, left, right, order), metas = snd eq in
+ let w, proof, (eq_ty, left, right, order), metas = eq in
match left,right with
Cic.Appl[f1;Cic.Meta _ as a1;Cic.Meta _ as b1],
Cic.Appl[f2;Cic.Meta _ as a2;Cic.Meta _ as b2] ->
(lazy
(Printf.sprintf "symmetric:\n%s\n"
(String.concat "\n"
- ((List.map
- (fun (s, e) -> (string_of_sign s) ^ " " ^
- (string_of_equality ~env e))
- (given)))))) in
+ (List.map
+ (fun e -> string_of_equality ~env e)
+ given)))) in
close env new' given
;;
let active = others @ others_simpl in
let tbl =
List.fold_left
- (fun t (_, e) -> Indexing.index t e)
+ (fun t e -> Indexing.index t e)
Indexing.empty active
in
- let res = forward_simplify env e (active, tbl) in
+ let res = forward_simplify env (Positive,e) (active, tbl) in
match others with
| hd::tl -> (
match res with
match equalities with
| [] -> []
| hd::tl ->
- let others = List.map (fun e -> (Positive, e)) tl in
let res =
- List.rev (List.map snd (simpl env (Positive, hd) others []))
+ List.rev (simpl env hd tl [])
in
debug_print
(lazy
res
;;
-(*
-(* applies equality to goal to see if the goal can be closed *)
-let apply_equality_to_goal env equality goal =
- let module C = Cic in
- let module HL = HelmLibraryObjects in
- let module I = Inference in
- let metasenv, context, ugraph = env in
- let _, proof, (ty, left, right, _), metas = equality in
- let eqterm =
- C.Appl [C.MutInd (LibraryObjects.eq_URI (), 0, []); ty; left; right] in
- let gproof, gmetas, gterm = goal in
-(* debug_print *)
-(* (lazy *)
-(* (Printf.sprintf "APPLY EQUALITY TO GOAL: %s, %s" *)
-(* (string_of_equality equality) (CicPp.ppterm gterm))); *)
- try
- let subst, metasenv', _ =
- Inference.unification metas gmetas context eqterm gterm ugraph
- in
- let newproof =
- match proof with
- | I.BasicProof (subst',t) -> I.BasicProof (subst@subst',t)
- | I.ProofBlock (s, uri, nt, t, pe, p) ->
- I.ProofBlock (subst @ s, uri, nt, t, pe, p)
- | _ -> assert false
- in
- let newgproof =
- let rec repl = function
- | I.ProofGoalBlock (_, gp) -> I.ProofGoalBlock (newproof, gp)
- | I.NoProof -> newproof
- | I.BasicProof _ -> newproof
- | I.SubProof (t, i, p) ->
- prerr_endline "SUBPROOF!";
- I.SubProof (t, i, repl p)
- | _ -> assert false
- in
- repl gproof
- in
- true, (subst:Inference.substitution), newgproof
- with CicUnification.UnificationFailure _ ->
- false, [], I.NoProof
-;;
-
-
-
-let new_meta metasenv =
- let m = CicMkImplicit.new_meta metasenv [] in
- incr maxmeta;
- while !maxmeta <= m do incr maxmeta done;
- !maxmeta
-;;
-
-
-(* applies a theorem or an equality to goal, returning a list of subgoals or
- an indication of failure *)
-let apply_to_goal env theorems ?passive active goal =
- let metasenv, context, ugraph = env in
- let proof, metas, term = goal in
- (* debug_print *)
- (* (lazy *)
- (* (Printf.sprintf "apply_to_goal with goal: %s" *)
- (* (\* (string_of_proof proof) *\)(CicPp.ppterm term))); *)
- let status =
- let irl =
- CicMkImplicit.identity_relocation_list_for_metavariable context in
- let proof', newmeta =
- let rec get_meta = function
- | SubProof (t, i, p) ->
- let t', i' = get_meta p in
- if i' = -1 then t, i else t', i'
- | ProofGoalBlock (_, p) -> get_meta p
- | _ -> Cic.Implicit None, -1
- in
- let p, m = get_meta proof in
- if m = -1 then
- let n = new_meta (metasenv @ metas) in
- Cic.Meta (n, irl), n
- else
- p, m
- in
- let metasenv = (newmeta, context, term)::metasenv @ metas in
- let bit = new_meta metasenv, context, term in
- let metasenv' = bit::metasenv in
- ((None, metasenv', Cic.Meta (newmeta, irl), term), newmeta)
- in
- let rec aux = function
- | [] -> `No
- | (theorem, thmty, _)::tl ->
- try
- let subst, (newproof, newgoals) =
- PrimitiveTactics.apply_tac_verbose_with_subst ~term:theorem status
- in
- if newgoals = [] then
- let _, _, p, _ = newproof in
- let newp =
- let rec repl = function
- | Inference.ProofGoalBlock (_, gp) ->
- Inference.ProofGoalBlock (Inference.BasicProof ([],p), gp)
- | Inference.NoProof -> Inference.BasicProof ([],p)
- | Inference.BasicProof _ -> Inference.BasicProof ([],p)
- | Inference.SubProof (t, i, p2) ->
- Inference.SubProof (t, i, repl p2)
- | _ -> assert false
- in
- repl proof
- in
- let _, m = status in
- let subst = List.filter (fun (i, _) -> i = m) subst in
- `Ok (subst, [newp, metas, term])
- else
- let _, menv, p, _ = newproof in
- let irl =
- CicMkImplicit.identity_relocation_list_for_metavariable context
- in
- let goals =
- List.map
- (fun i ->
- let _, _, ty = CicUtil.lookup_meta i menv in
- let p' =
- let rec gp = function
- | SubProof (t, i, p) ->
- SubProof (t, i, gp p)
- | ProofGoalBlock (sp1, sp2) ->
- ProofGoalBlock (sp1, gp sp2)
- | BasicProof _
- | NoProof ->
- SubProof (p, i, BasicProof ([],Cic.Meta (i, irl)))
- | ProofSymBlock (s, sp) ->
- ProofSymBlock (s, gp sp)
- | ProofBlock (s, u, nt, t, pe, sp) ->
- prerr_endline "apply_to_goal!";
- ProofBlock (s, u, nt, t, pe, gp sp)
- in gp proof
- in
- (p', menv, ty))
- newgoals
- in
- let goals =
- let weight t =
- let w, m = weight_of_term t in
- w + 2 * (List.length m)
- in
- List.sort
- (fun (_, _, t1) (_, _, t2) ->
- Pervasives.compare (weight t1) (weight t2))
- goals
- in
- let best = aux tl in
- match best with
- | `Ok (_, _) -> best
- | `No -> `GoOn ([subst, goals])
- | `GoOn sl -> `GoOn ((subst, goals)::sl)
- with ProofEngineTypes.Fail msg ->
- aux tl
- in
- let r, s, l =
- if Inference.term_is_equality term then
- let rec appleq_a = function
- | [] -> false, [], []
- | (Positive, equality)::tl ->
- let ok, s, newproof = apply_equality_to_goal env equality goal in
- if ok then true, s, [newproof, metas, term] else appleq_a tl
- | _::tl -> appleq_a tl
- in
- let rec appleq_p = function
- | [] -> false, [], []
- | equality::tl ->
- let ok, s, newproof = apply_equality_to_goal env equality goal in
- if ok then true, s, [newproof, metas, term] else appleq_p tl
- in
- let al, _ = active in
- match passive with
- | None -> appleq_a al
- | Some (_, (pl, _), _) ->
- let r, s, l = appleq_a al in if r then r, s, l else appleq_p pl
- else
- false, [], []
- in
- if r = true then `Ok ((s:Cic.substitution),l) else aux theorems
-;;
-
-
-(* sorts a conjunction of goals in order to detect earlier if it is
- unsatisfiable. Non-predicate goals are placed at the end of the list *)
-let sort_goal_conj (metasenv, context, ugraph) (depth, gl) =
- let gl =
- List.stable_sort
- (fun (_, e1, g1) (_, e2, g2) ->
- let ty1, _ =
- CicTypeChecker.type_of_aux' (e1 @ metasenv) context g1 ugraph
- and ty2, _ =
- CicTypeChecker.type_of_aux' (e2 @ metasenv) context g2 ugraph
- in
- let prop1 =
- let b, _ =
- CicReduction.are_convertible context (Cic.Sort Cic.Prop) ty1 ugraph
- in
- if b then 0 else 1
- and prop2 =
- let b, _ =
- CicReduction.are_convertible context (Cic.Sort Cic.Prop) ty2 ugraph
- in
- if b then 0 else 1
- in
- if prop1 = 0 && prop2 = 0 then
- let e1 = if Inference.term_is_equality g1 then 0 else 1
- and e2 = if Inference.term_is_equality g2 then 0 else 1 in
- e1 - e2
- else
- prop1 - prop2)
- gl
- in
- (depth, gl)
-;;
-
-
-let is_meta_closed goals =
- List.for_all (fun (_, _, g) -> CicUtil.is_meta_closed g) goals
-;;
-
-
-(* applies a series of theorems/equalities to a conjunction of goals *)
-let rec apply_to_goal_conj env theorems ?passive active (depth, goals) =
- let aux (goal, r) tl =
- let propagate_subst subst (proof, metas, term) =
- let rec repl = function
- | NoProof -> NoProof
- | BasicProof (subst',t) ->
- BasicProof (subst@subst',t)
- | ProofGoalBlock (p, pb) ->
- let pb' = repl pb in
- ProofGoalBlock (p, pb')
- | SubProof (t, i, p) ->
- let t' = Inference.apply_subst subst t in
- let p = repl p in
- SubProof (t', i, p)
- | ProofSymBlock (ens, p) -> ProofSymBlock (ens, repl p)
- | ProofBlock (s, u, nty, t, pe, p) ->
- ProofBlock (subst @ s, u, nty, t, pe, p)
- in (repl proof, metas, term)
- in
- (* let r = apply_to_goal env theorems ?passive active goal in *) (
- match r with
- | `No -> `No (depth, goals)
- | `GoOn sl ->
- let l =
- List.map
- (fun (s, gl) ->
- let tl = List.map (propagate_subst s) tl in
- sort_goal_conj env (depth+1, gl @ tl)) sl
- in
- `GoOn l
- | `Ok (subst, gl) ->
- if tl = [] then
- `Ok (depth, gl)
- else
- let p, _, _ = List.hd gl in
- let subproof =
- let rec repl = function
- | SubProof (_, _, p) -> repl p
- | ProofGoalBlock (p1, p2) ->
- ProofGoalBlock (repl p1, repl p2)
- | p -> p
- in
- build_proof_term (repl p)
- in
- let i =
- let rec get_meta = function
- | SubProof (_, i, p) ->
- let i' = get_meta p in
- if i' = -1 then i else i'
-(* max i (get_meta p) *)
- | ProofGoalBlock (_, p) -> get_meta p
- | _ -> -1
- in
- get_meta p
- in
- let subst =
- let _, (context, _, _) = List.hd subst in
- [i, (context, subproof, Cic.Implicit None)]
- in
- let tl = List.map (propagate_subst subst) tl in
- let conj = sort_goal_conj env (depth(* +1 *), tl) in
- `GoOn ([conj])
- )
- in
- if depth > !maxdepth || (List.length goals) > !maxwidth then
- `No (depth, goals)
- else
- let rec search_best res = function
- | [] -> res
- | goal::tl ->
- let r = apply_to_goal env theorems ?passive active goal in
- match r with
- | `Ok _ -> (goal, r)
- | `No -> search_best res tl
- | `GoOn l ->
- let newres =
- match res with
- | _, `Ok _ -> assert false
- | _, `No -> goal, r
- | _, `GoOn l2 ->
- if (List.length l) < (List.length l2) then goal, r else res
- in
- search_best newres tl
- in
- let hd = List.hd goals in
- let res = hd, (apply_to_goal env theorems ?passive active hd) in
- let best =
- match res with
- | _, `Ok _ -> res
- | _, _ -> search_best res (List.tl goals)
- in
- let res = aux best (List.filter (fun g -> g != (fst best)) goals) in
- match res with
- | `GoOn ([conj]) when is_meta_closed (snd conj) &&
- (List.length (snd conj)) < (List.length goals)->
- apply_to_goal_conj env theorems ?passive active conj
- | _ -> res
-;;
-
-
-(*
-module OrderedGoals = struct
- type t = int * (Inference.proof * Cic.metasenv * Cic.term) list
-
- let compare g1 g2 =
- let d1, l1 = g1
- and d2, l2 = g2 in
- let r = d2 - d1 in
- if r <> 0 then r
- else let r = (List.length l1) - (List.length l2) in
- if r <> 0 then r
- else
- let res = ref 0 in
- let _ =
- List.exists2
- (fun (_, _, t1) (_, _, t2) ->
- let r = Pervasives.compare t1 t2 in
- if r <> 0 then (
- res := r;
- true
- ) else
- false) l1 l2
- in !res
-end
-
-module GoalsSet = Set.Make(OrderedGoals);;
-
-
-exception SearchSpaceOver;;
-*)
-
-
-(*
-let apply_to_goals env is_passive_empty theorems active goals =
- debug_print (lazy "\n\n\tapply_to_goals\n\n");
- let add_to set goals =
- List.fold_left (fun s g -> GoalsSet.add g s) set goals
- in
- let rec aux set = function
- | [] ->
- debug_print (lazy "HERE!!!");
- if is_passive_empty then raise SearchSpaceOver else false, set
- | goals::tl ->
- let res = apply_to_goal_conj env theorems active goals in
- match res with
- | `Ok newgoals ->
- let _ =
- let d, p, t =
- match newgoals with
- | (d, (p, _, t)::_) -> d, p, t
- | _ -> assert false
- in
- debug_print
- (lazy
- (Printf.sprintf "\nOK!!!!\ndepth: %d\nProof: %s\ngoal: %s\n"
- d (string_of_proof p) (CicPp.ppterm t)))
- in
- true, GoalsSet.singleton newgoals
- | `GoOn newgoals ->
- let set' = add_to set (goals::tl) in
- let set' = add_to set' newgoals in
- false, set'
- | `No newgoals ->
- aux set tl
- in
- let n = List.length goals in
- let res, goals = aux (add_to GoalsSet.empty goals) goals in
- let goals = GoalsSet.elements goals in
- debug_print (lazy "\n\tapply_to_goals end\n");
- let m = List.length goals in
- if m = n && is_passive_empty then
- raise SearchSpaceOver
- else
- res, goals
-;;
-*)
-
-
-(* sorts the list of passive goals to minimize the search for a proof (doesn't
- work that well yet...) *)
-let sort_passive_goals goals =
- List.stable_sort
- (fun (d1, l1) (d2, l2) ->
- let r1 = d2 - d1
- and r2 = (List.length l1) - (List.length l2) in
- let foldfun ht (_, _, t) =
- let _ = List.map (fun i -> Hashtbl.replace ht i 1) (metas_of_term t)
- in ht
- in
- let m1 = Hashtbl.length (List.fold_left foldfun (Hashtbl.create 3) l1)
- and m2 = Hashtbl.length (List.fold_left foldfun (Hashtbl.create 3) l2)
- in let r3 = m1 - m2 in
- if r3 <> 0 then r3
- else if r2 <> 0 then r2
- else r1)
- (* let _, _, g1 = List.hd l1 *)
-(* and _, _, g2 = List.hd l2 in *)
-(* let e1 = if Inference.term_is_equality g1 then 0 else 1 *)
-(* and e2 = if Inference.term_is_equality g2 then 0 else 1 *)
-(* in let r4 = e1 - e2 in *)
-(* if r4 <> 0 then r3 else r1) *)
- goals
-;;
-
-
let print_goals goals =
(String.concat "\n"
(List.map
Printf.sprintf "%d: %s" d (String.concat "; " gl')) goals))
;;
-
-(* tries to prove the first conjunction in goals with applications of
- theorems/equalities, returning new sub-goals or an indication of success *)
-let apply_goal_to_theorems dbd env theorems ?passive active goals =
- let theorems, _ = theorems in
- let a_goals, p_goals = goals in
- let goal = List.hd a_goals in
- let not_in_active gl =
- not
- (List.exists
- (fun (_, gl') ->
- if (List.length gl) = (List.length gl') then
- List.for_all2 (fun (_, _, g1) (_, _, g2) -> g1 = g2) gl gl'
- else
- false)
- a_goals)
- in
- let aux theorems =
- let res = apply_to_goal_conj env theorems ?passive active goal in
- match res with
- | `Ok newgoals ->
- true, ([newgoals], [])
- | `No _ ->
- false, (a_goals, p_goals)
- | `GoOn newgoals ->
- let newgoals =
- List.filter
- (fun (d, gl) ->
- (d <= !maxdepth) && (List.length gl) <= !maxwidth &&
- not_in_active gl)
- newgoals in
- let p_goals = newgoals @ p_goals in
- let p_goals = sort_passive_goals p_goals in
- false, (a_goals, p_goals)
- in
- aux theorems
-;;
-
-
-let apply_theorem_to_goals env theorems active goals =
- let a_goals, p_goals = goals in
- let theorem = List.hd (fst theorems) in
- let theorems = [theorem] in
- let rec aux p = function
- | [] -> false, ([], p)
- | goal::tl ->
- let res = apply_to_goal_conj env theorems active goal in
- match res with
- | `Ok newgoals -> true, ([newgoals], [])
- | `No _ -> aux p tl
- | `GoOn newgoals -> aux (newgoals @ p) tl
- in
- let ok, (a, p) = aux p_goals a_goals in
- if ok then
- ok, (a, p)
- else
- let p_goals =
- List.stable_sort
- (fun (d1, l1) (d2, l2) ->
- let r = d2 - d1 in
- if r <> 0 then r
- else let r = (List.length l1) - (List.length l2) in
- if r <> 0 then r
- else
- let res = ref 0 in
- let _ =
- List.exists2
- (fun (_, _, t1) (_, _, t2) ->
- let r = Pervasives.compare t1 t2 in
- if r <> 0 then (res := r; true) else false) l1 l2
- in !res)
- p
- in
- ok, (a_goals, p_goals)
-;;
-
-(* given-clause algorithm with lazy reduction strategy *)
-let rec given_clause dbd env goals theorems passive active =
- let goals = simplify_goals env goals active in
- let ok, goals = activate_goal goals in
- (* let theorems = simplify_theorems env theorems active in *)
- if ok then
- let ok, goals = apply_goal_to_theorems dbd env theorems active goals in
- if ok then
- let proof =
- match (fst goals) with
- | (_, [proof, _, _])::_ -> Some proof
- | _ -> assert false
- in
- ParamodulationSuccess (proof, env)
- else
- given_clause_aux dbd env goals theorems passive active
- else
-(* let ok', theorems = activate_theorem theorems in *)
- let ok', theorems = false, theorems in
- if ok' then
- let ok, goals = apply_theorem_to_goals env theorems active goals in
- if ok then
- let proof =
- match (fst goals) with
- | (_, [proof, _, _])::_ -> Some proof
- | _ -> assert false
- in
- ParamodulationSuccess (proof, env)
- else
- given_clause_aux dbd env goals theorems passive active
- else
- if (passive_is_empty passive) then ParamodulationFailure
- else given_clause_aux dbd env goals theorems passive active
-
-and given_clause_aux dbd env goals theorems passive active =
- let _,context,_ = env in
- let time1 = Unix.gettimeofday () in
-
- let selection_estimate = get_selection_estimate () in
- let kept = size_of_passive passive in
- let passive =
- if !time_limit = 0. || !processed_clauses = 0 then
- passive
- else if !elapsed_time > !time_limit then (
- debug_print (lazy (Printf.sprintf "Time limit (%.2f) reached: %.2f\n"
- !time_limit !elapsed_time));
- make_passive [] []
- ) else if kept > selection_estimate then (
- debug_print
- (lazy (Printf.sprintf ("Too many passive equalities: pruning..." ^^
- "(kept: %d, selection_estimate: %d)\n")
- kept selection_estimate));
- prune_passive selection_estimate active passive
- ) else
- passive
- in
-
- let time2 = Unix.gettimeofday () in
- passive_maintainance_time := !passive_maintainance_time +. (time2 -. time1);
-
- kept_clauses := (size_of_passive passive) + (size_of_active active);
- match passive_is_empty passive with
- | true -> (* ParamodulationFailure *)
- given_clause dbd env goals theorems passive active
- | false ->
- let (sign, current), passive = select env (fst goals) passive active in
- let names = List.map (HExtlib.map_option (fun (name,_) -> name)) context in
- prerr_endline ("Selected = " ^
- (CicPp.pp (Inference.term_of_equality current) names));
- let time1 = Unix.gettimeofday () in
- let res = forward_simplify env (sign, current) ~passive active in
- let time2 = Unix.gettimeofday () in
- forward_simpl_time := !forward_simpl_time +. (time2 -. time1);
- match res with
- | None ->
- given_clause dbd env goals theorems passive active
- | Some (sign, current) ->
- if (sign = Negative) && (is_identity env current) then (
- debug_print
- (lazy (Printf.sprintf "OK!!! %s %s" (string_of_sign sign)
- (string_of_equality ~env current)));
- let _, proof, _, _ = current in
- ParamodulationSuccess (Some proof, env)
- ) else (
- debug_print
- (lazy "\n================================================");
- debug_print (lazy (Printf.sprintf "selected: %s %s"
- (string_of_sign sign)
- (string_of_equality ~env current)));
-
- let t1 = Unix.gettimeofday () in
- let new' = infer env sign current active in
- let t2 = Unix.gettimeofday () in
- infer_time := !infer_time +. (t2 -. t1);
-
- let res, goal' = contains_empty env new' in
- if res then
- let proof =
- match goal' with
- | Some goal -> let _, proof, _, _ = goal in Some proof
- | None -> None
- in
- ParamodulationSuccess (proof, env)
- else
- let t1 = Unix.gettimeofday () in
- let new' = forward_simplify_new env new' active in
- let t2 = Unix.gettimeofday () in
- let _ =
- forward_simpl_new_time :=
- !forward_simpl_new_time +. (t2 -. t1)
- in
- let active =
- match sign with
- | Negative -> active
- | Positive ->
- let t1 = Unix.gettimeofday () in
- let active, _, newa, _ =
- backward_simplify env ([], [current]) active
- in
- let t2 = Unix.gettimeofday () in
- backward_simpl_time :=
- !backward_simpl_time +. (t2 -. t1);
- match newa with
- | None -> active
- | Some (n, p) ->
- let al, tbl = active in
- let nn = List.map (fun e -> Negative, e) n in
- let pp, tbl =
- List.fold_right
- (fun e (l, t) ->
- (Positive, e)::l,
- Indexing.index tbl e)
- p ([], tbl)
- in
- nn @ al @ pp, tbl
- in
- match contains_empty env new' with
- | false, _ ->
- let active =
- let al, tbl = active in
- match sign with
- | Negative -> (sign, current)::al, tbl
- | Positive ->
- al @ [(sign, current)], Indexing.index tbl current
- in
- let passive = add_to_passive passive new' in
- given_clause dbd env goals theorems passive active
- | true, goal ->
- let proof =
- match goal with
- | Some goal ->
- let _, proof, _, _ = goal in Some proof
- | None -> None
- in
- ParamodulationSuccess (proof, env)
- )
-;;
-*)
-
let check_if_goal_is_subsumed env (proof,menv,ty) table =
match ty with
| Cic.Appl[Cic.MutInd(uri,_,_);eq_ty;left;right]
let counter = ref 0
(** given-clause algorithm with full reduction strategy *)
-let rec given_clause_fullred dbd env goals theorems passive active =
-(*
- let table,list = active in
- assert (check_table list table);
-*)
+let rec given_clause_fullred dbd env goals theorems ~passive active =
let goals = simplify_goals env goals ~passive active in
let _,context,_ = env in
let ok, goals = activate_goal goals in
in
if ok then
( prerr_endline "esco qui";
- let active =
- List.filter test (fst active) in
- let s = Printf.sprintf "actives:\n%s\n"
- (String.concat "\n"
- ((List.map
- (fun (s, e) -> (string_of_sign s) ^ " " ^
- (string_of_equality ~env e))
- active)))
- in prerr_endline s;
- let passive =
- List.filter
- (fun x -> test (1,x))
- (let x,y,_ = passive in (fst x)@(fst y)) in
- let p = Printf.sprintf "passives:\n%s\n"
- (String.concat "\n"
- ((List.map
- (fun e ->
- (string_of_equality ~env e))
- passive)))
- in prerr_endline p;
(*
let s = Printf.sprintf "actives:\n%s\n"
(String.concat "\n"
" #ACTIVES: " ^ string_of_int (size_of_active active) ^
" #PASSIVES: " ^ string_of_int (size_of_passive passive));
incr counter;
-(* if !counter mod 10 = 0 then
+(*
+ if !counter mod 10 = 0 then
begin
let size = HExtlib.estimate_size (passive,active) in
let sizep = HExtlib.estimate_size (passive) in
else if !elapsed_time > !time_limit then (
debug_print (lazy (Printf.sprintf "Time limit (%.2f) reached: %.2f\n"
!time_limit !elapsed_time));
- make_passive [] []
+ make_passive []
) else if kept > selection_estimate then (
debug_print
(lazy (Printf.sprintf ("Too many passive equalities: pruning..." ^^
kept_clauses := (size_of_passive passive) + (size_of_active active);
match passive_is_empty passive with
- | true -> (* ParamodulationFailure *)
- given_clause_fullred dbd env goals theorems passive active
+ | true -> ParamodulationFailure
+ (* given_clause_fullred dbd env goals theorems passive active *)
| false ->
- let (sign, current), passive = select env (fst goals) passive active in
+ let current, passive = select env (fst goals) passive in
prerr_endline
- ("Selected = " ^ (string_of_sign sign) ^ " " ^
- string_of_equality ~env current);
+ ("Selected = " ^ string_of_equality ~env current);
(* ^
(let w,p,(t,l,r,o),m = current in
" size w: " ^ string_of_int (HExtlib.estimate_size w)^
" size m-c: " ^ string_of_int
(HExtlib.estimate_size (List.map (fun (x,_,_) -> x) m)))) *)
let time1 = Unix.gettimeofday () in
- let res = forward_simplify env (sign, current) ~passive active in
+ let res = forward_simplify env (Positive, current) ~passive active in
let time2 = Unix.gettimeofday () in
forward_simpl_time := !forward_simpl_time +. (time2 -. time1);
match res with
| None ->
(* weight_age_counter := !weight_age_counter + 1; *)
given_clause_fullred dbd env goals theorems passive active
- | Some (sign, current) ->
- if test (sign, current) then
- (prerr_endline
- ("Simplified = " ^ (string_of_sign sign) ^ " " ^
- string_of_equality ~env current);
- let active = fst active in
- let s = Printf.sprintf "actives:\n%s\n"
- (String.concat "\n"
- ((List.map
- (fun (s, e) -> (string_of_sign s) ^ " " ^
- (string_of_equality ~env e))
- active)))
- in prerr_endline s;
- assert false);
- if (sign = Negative) && (is_identity env current) then (
- debug_print
- (lazy (Printf.sprintf "OK!!! %s %s" (string_of_sign sign)
- (string_of_equality ~env current)));
- let _, proof, _, m = current in
- ParamodulationSuccess (Some (proof, m))
- ) else (
+ | Some current ->
+ debug_print (lazy (Printf.sprintf "selected: %s"
+ (string_of_equality ~env current)));
+ let t1 = Unix.gettimeofday () in
+ let new' = infer env current active in
+ let _ =
debug_print
- (lazy "\n================================================");
- debug_print (lazy (Printf.sprintf "selected: %s %s"
- (string_of_sign sign)
- (string_of_equality ~env current)));
-
- let t1 = Unix.gettimeofday () in
- let new' = infer env sign current active in
- let _ =
- match new' with
- | neg, pos ->
- debug_print
- (lazy
- (Printf.sprintf "new' (senza semplificare):\n%s\n"
- (String.concat "\n"
- ((List.map
- (fun e -> "Negative " ^
- (string_of_equality ~env e)) neg) @
- (List.map
- (fun e -> "Positive " ^
- (string_of_equality ~env e)) pos)))))
- in
- let t2 = Unix.gettimeofday () in
+ (lazy
+ (Printf.sprintf "new' (senza semplificare):\n%s\n"
+ (String.concat "\n"
+ (List.map
+ (fun e -> "Positive " ^
+ (string_of_equality ~env e)) new'))))
+ in
+ let t2 = Unix.gettimeofday () in
infer_time := !infer_time +. (t2 -. t1);
let active =
if is_identity env current then active
else
let al, tbl = active in
- match sign with
- | Negative -> (sign, current)::al, tbl
- | Positive ->
- al @ [(sign, current)], Indexing.index tbl current
+ al @ [current], Indexing.index tbl current
in
let rec simplify new' active passive =
let t1 = Unix.gettimeofday () in
let t1 = Unix.gettimeofday () in
let active, passive, newa, retained =
backward_simplify env new' ~passive active in
-
let t2 = Unix.gettimeofday () in
backward_simpl_time := !backward_simpl_time +. (t2 -. t1);
match newa, retained with
| None, None -> active, passive, new'
- | Some (n, p), None
- | None, Some (n, p) ->
- let nn, np = new' in
+ | Some p, None
+ | None, Some p ->
+ let np = new' in
if Utils.debug_metas then
begin
List.iter
(fun x->Indexing.check_target context x "simplify1")
- n;
- List.iter
- (fun x->Indexing.check_target context x "simplify2")
- p
+ p;
end;
- simplify (nn @ n, np @ p) active passive
- | Some (n, p), Some (rn, rp) ->
- let nn, np = new' in
- simplify (nn @ n @ rn, np @ p @ rp) active passive
+ simplify (new' @ p) active passive
+ | Some p, Some rp ->
+ simplify (new' @ p @ rp) active passive
in
let active, _, new' = simplify new' active passive in
(* pessima prova
(Printf.sprintf "active:\n%s\n"
(String.concat "\n"
((List.map
- (fun (s, e) -> (string_of_sign s) ^ " " ^
- (string_of_equality ~env e))
+ (fun e -> (string_of_equality ~env e))
(fst active))))))
in
let _ =
- match new' with
- | neg, pos ->
- debug_print
- (lazy
- (Printf.sprintf "new':\n%s\n"
- (String.concat "\n"
- ((List.map
- (fun e -> "Negative " ^
- (string_of_equality ~env e)) neg) @
- (List.map
- (fun e -> "Positive " ^
- (string_of_equality ~env e)) pos)))))
+ debug_print
+ (lazy
+ (Printf.sprintf "new':\n%s\n"
+ (String.concat "\n"
+ ((List.map
+ (fun e -> "Negative " ^
+ (string_of_equality ~env e)) new')))))
in
- match contains_empty env new' with
- | false, _ ->
- let passive = add_to_passive passive new' in
- given_clause_fullred dbd env goals theorems passive active
- | true, goal ->
- let proof =
- match goal with
- | Some goal -> let _, proof, _, env = goal in Some (proof,env)
- | None -> None
- in
- ParamodulationSuccess proof
- )
-
+ let passive = add_to_passive passive new' in
+ given_clause_fullred dbd env goals theorems passive active
;;
+(*
let profiler0 = HExtlib.profile "P/Saturation.given_clause_fullred"
let given_clause_fullred dbd env goals theorems passive active =
profiler0.HExtlib.profile
(given_clause_fullred dbd env goals theorems passive) active
-
+*)
+
let rec saturate_equations env goal accept_fun passive active =
elapsed_time := Unix.gettimeofday () -. !start_time;
if !elapsed_time > !time_limit then
(active, passive)
else
- let (sign, current), passive = select env [1, [goal]] passive active in
- let res = forward_simplify env (sign, current) ~passive active in
+ let current, passive = select env [1, [goal]] passive in
+ let res = forward_simplify env (Positive, current) ~passive active in
match res with
| None ->
saturate_equations env goal accept_fun passive active
- | Some (sign, current) ->
- assert (sign = Positive);
- debug_print
- (lazy "\n================================================");
- debug_print (lazy (Printf.sprintf "selected: %s %s"
- (string_of_sign sign)
+ | Some current ->
+ debug_print (lazy (Printf.sprintf "selected: %s"
(string_of_equality ~env current)));
- let new' = infer env sign current active in
+ let new' = infer env current active in
let active =
if is_identity env current then active
else
let al, tbl = active in
- al @ [(sign, current)], Indexing.index tbl current
+ al @ [current], Indexing.index tbl current
in
let rec simplify new' active passive =
let new' = forward_simplify_new env new' ~passive active in
backward_simplify env new' ~passive active in
match newa, retained with
| None, None -> active, passive, new'
- | Some (n, p), None
- | None, Some (n, p) ->
- let nn, np = new' in
- simplify (nn @ n, np @ p) active passive
- | Some (n, p), Some (rn, rp) ->
- let nn, np = new' in
- simplify (nn @ n @ rn, np @ p @ rp) active passive
+ | Some p, None
+ | None, Some p -> simplify (new' @ p) active passive
+ | Some p, Some rp -> simplify (new' @ p @ rp) active passive
in
let active, passive, new' = simplify new' active passive in
let _ =
(lazy
(Printf.sprintf "active:\n%s\n"
(String.concat "\n"
- ((List.map
- (fun (s, e) -> (string_of_sign s) ^ " " ^
- (string_of_equality ~env e))
- (fst active))))))
+ (List.map
+ (fun e -> string_of_equality ~env e)
+ (fst active)))))
in
- let _ =
- match new' with
- | neg, pos ->
- debug_print
- (lazy
- (Printf.sprintf "new':\n%s\n"
- (String.concat "\n"
- ((List.map
- (fun e -> "Negative " ^
- (string_of_equality ~env e)) neg) @
- (List.map
- (fun e -> "Positive " ^
- (string_of_equality ~env e)) pos)))))
+ let _ =
+ debug_print
+ (lazy
+ (Printf.sprintf "new':\n%s\n"
+ (String.concat "\n"
+ (List.map
+ (fun e -> "Negative " ^
+ (string_of_equality ~env e)) new'))))
in
- let new' = match new' with _, pos -> [], List.filter accept_fun pos in
+ let new' = List.filter accept_fun new' in
let passive = add_to_passive passive new' in
saturate_equations env goal accept_fun passive active
;;
-
-
let main dbd full term metasenv ugraph =
let module C = Cic in
let module T = CicTypeChecker in
let equalities = simplify_equalities env
(equalities@library_equalities) in
let active = make_active () in
- let passive = make_passive [] equalities in
+ let passive = make_passive equalities in
Printf.printf "\ncurrent goal: %s\n"
(let _, _, g = goal in CicPp.ppterm g);
Printf.printf "\ncontext:\n%s\n" (PP.ppcontext context);
(Printf.sprintf "Time to retrieve theorems: %.9f\n" (t2 -. t1)));
in
let active = make_active () in
- let passive = make_passive [] equalities in
+ let passive = make_passive equalities in
let start = Unix.gettimeofday () in
let res =
let goals = make_goals goal in
in
match res with
| ParamodulationSuccess (Some (proof, proof_menv)) ->
+ prerr_endline "OK, found a proof!";
debug_print (lazy "OK, found a proof!");
let proof = Inference.build_proof_term proof in
let equality_for_replace i t1 =
| C.Meta (n, _) -> n = i
| _ -> false
in
+ prerr_endline "replacing metas";
let proof_menv, what, with_what =
let irl =
CicMkImplicit.identity_relocation_list_for_metavariable context
let newstatus =
try
let ty, ug =
+ prerr_endline "type checking ... ";
CicTypeChecker.type_of_aux' newmetasenv context proof ugraph
in
- debug_print (lazy (CicPp.pp proof [](* names *)));
+ prerr_endline (CicPp.pp proof [](* names *));
debug_print
(lazy
(Printf.sprintf
| hd::tl -> (
match res with
| None -> simpl hd tl others_simpl
- | Some e -> simpl hd tl ((u, (snd e))::others_simpl)
+ | Some e -> simpl hd tl ((u, e)::others_simpl)
)
| [] -> (
match res with
| None -> others_simpl
- | Some e -> (u, (snd e))::others_simpl
+ | Some e -> (u, e)::others_simpl
)
in
let _equalities =
let goal = Inference.BasicProof ([],new_meta_goal), [], goal in
let equalities = simplify_equalities env (equalities@library_equalities) in
let active = make_active () in
- let passive = make_passive [] equalities in
+ let passive = make_passive equalities in
Printf.printf "\ncontext:\n%s\n" (PP.ppcontext context);
Printf.printf "\nmetasenv:\n%s\n" (print_metasenv metasenv);
Printf.printf "\nequalities:\n%s\n"
let passive =
match rp with
- | (n, _), (p, _), _ ->
+ | (p, _), _ ->
EqualitySet.elements (List.fold_left addfun EqualitySet.empty p)
in
let active =
- let l = List.map snd (fst ra) in
+ let l = fst ra in
EqualitySet.elements (List.fold_left addfun EqualitySet.empty l)
in
Printf.printf "\n\nRESULTS:\nActive:\n%s\n\nPassive:\n%s\n"