include "basics/relations.ma".
+(* Definitions **************************************************************)
+
+(* natural numbers *)
+
inductive nat : Type[0] ≝
| O : nat
| S : nat → nat.
definition pred ≝
λn. match n with [ O ⇒ O | S p ⇒ p].
-theorem pred_Sn : ∀n. n = pred (S n).
-// qed.
+definition not_zero: nat → Prop ≝
+ λn: nat. match n with [ O ⇒ False | (S p) ⇒ True ].
-theorem injective_S : injective nat nat S.
-// qed.
+(* order relations *)
-(*
-theorem inj_S : \forall n,m:nat.(S n)=(S m) \to n=m.
-//. qed. *)
+inductive le (n:nat) : nat → Prop ≝
+ | le_n : le n n
+ | le_S : ∀ m:nat. le n m → le n (S m).
-theorem not_eq_S: ∀n,m:nat. n ≠ m → S n ≠ S m.
-/2/ qed.
+interpretation "natural 'less or equal to'" 'leq x y = (le x y).
-definition not_zero: nat → Prop ≝
- λn: nat. match n with [ O ⇒ False | (S p) ⇒ True ].
+interpretation "natural 'neither less nor equal to'" 'nleq x y = (Not (le x y)).
-theorem not_eq_O_S : ∀n:nat. O ≠ S n.
-#n @nmk #eqOS (change with (not_zero O)) >eqOS // qed.
+definition lt: nat → nat → Prop ≝ λn,m. S n ≤ m.
-theorem not_eq_n_Sn: ∀n:nat. n ≠ S n.
-#n (elim n) /2/ qed.
+interpretation "natural 'less than'" 'lt x y = (lt x y).
+
+interpretation "natural 'not less than'" 'nless x y = (Not (lt x y)).
+
+definition ge: nat → nat → Prop ≝ λn,m.m ≤ n.
+
+interpretation "natural 'greater or equal to'" 'geq x y = (ge x y).
+
+definition gt: nat → nat → Prop ≝ λn,m.m<n.
+
+interpretation "natural 'greater than'" 'gt x y = (gt x y).
+
+interpretation "natural 'not greater than'" 'ngtr x y = (Not (gt x y)).
+
+(* abstract properties *)
+
+definition increasing ≝ λf:nat → nat. ∀n:nat. f n < f (S n).
+
+(* arithmetic operations *)
+
+let rec plus n m ≝
+ match n with [ O ⇒ m | S p ⇒ S (plus p m) ].
+
+interpretation "natural plus" 'plus x y = (plus x y).
+
+let rec times n m ≝
+ match n with [ O ⇒ 0 | S p ⇒ m + (times p m) ].
+
+interpretation "natural times" 'times x y = (times x y).
+
+let rec minus n m ≝
+ match n with
+ [ O ⇒ O
+ | S p ⇒
+ match m with
+ [ O ⇒ S p
+ | S q ⇒ minus p q ]].
+
+interpretation "natural minus" 'minus x y = (minus x y).
+
+(* Generic conclusion ******************************************************)
theorem nat_case:
∀n:nat.∀P:nat → Prop.
→ ∀n,m:nat. R n m.
#R #ROn #RSO #RSS #n (elim n) // #n0 #Rn0m #m (cases m) /2/ qed.
-theorem decidable_eq_nat : ∀n,m:nat.decidable (n=m).
-@nat_elim2 #n [ (cases n) /2/ | /3/ | #m #Hind (cases Hind) /3/]
-qed.
-
-(*************************** plus ******************************)
+lemma le_gen: ∀P:nat → Prop.∀n.(∀i. i ≤ n → P i) → P n.
+/2/ qed.
-let rec plus n m ≝
- match n with [ O ⇒ m | S p ⇒ S (plus p m) ].
+(* Equalities ***************************************************************)
-interpretation "natural plus" 'plus x y = (plus x y).
+theorem pred_Sn : ∀n. n = pred (S n).
+// qed.
-theorem plus_O_n: ∀n:nat. n = O+n.
+theorem injective_S : injective nat nat S.
// qed.
-(*
-theorem plus_Sn_m: ∀n,m:nat. S (n + m) = S n + m.
+theorem S_pred: ∀n. 0 < n → S(pred n) = n.
+#n #posn (cases posn) //
+qed.
+
+theorem plus_O_n: ∀n:nat. n = 0 + n.
// qed.
-*)
-theorem plus_n_O: ∀n:nat. n = n+O.
+theorem plus_n_O: ∀n:nat. n = n + 0.
#n (elim n) normalize // qed.
theorem plus_n_Sm : ∀n,m:nat. S (n+m) = n + S m.
#n (elim n) normalize // qed.
-(*
-theorem plus_Sn_m1: ∀n,m:nat. S m + n = n + S m.
-#n (elim n) normalize // qed.
-*)
-
-(* deleterio?
-theorem plus_n_1 : ∀n:nat. S n = n+1.
-// qed.
-*)
-
theorem commutative_plus: commutative ? plus.
#n (elim n) normalize // qed.
theorem injective_plus_r: ∀n:nat.injective nat nat (λm.n+m).
#n (elim n) normalize /3/ qed.
-(* theorem inj_plus_r: \forall p,n,m:nat. p+n = p+m \to n=m
-\def injective_plus_r.
-
-theorem injective_plus_l: ∀m:nat.injective nat nat (λn.n+m).
-/2/ qed. *)
-
-(* theorem inj_plus_l: \forall p,n,m:nat. n+p = m+p \to n=m
-\def injective_plus_l. *)
-
-(*************************** times *****************************)
-
-let rec times n m ≝
- match n with [ O ⇒ O | S p ⇒ m+(times p m) ].
-
-interpretation "natural times" 'times x y = (times x y).
+theorem not_eq_S: ∀n,m:nat. n ≠ m → S n ≠ S m.
+/2/ qed.
theorem times_Sn_m: ∀n,m:nat. m+n*m = S n*m.
// qed.
-theorem times_O_n: ∀n:nat. O = O*n.
+theorem times_O_n: ∀n:nat. 0 = 0 * n.
// qed.
-theorem times_n_O: ∀n:nat. O = n*O.
+theorem times_n_O: ∀n:nat. 0 = n * 0.
#n (elim n) // qed.
theorem times_n_Sm : ∀n,m:nat. n+(n*m) = n*(S m).
theorem commutative_times : commutative nat times.
#n (elim n) normalize // qed.
-(* variant sym_times : \forall n,m:nat. n*m = m*n \def
-symmetric_times. *)
-
theorem distributive_times_plus : distributive nat times plus.
#n (elim n) normalize // qed.
theorem times_n_1 : ∀n:nat. n = n * 1.
#n // qed.
-(* ci servono questi risultati?
-theorem times_O_to_O: ∀n,m:nat.n*m=O → n=O ∨ m=O.
-napply nat_elim2 /2/
-#n #m #H normalize #H1 napply False_ind napply not_eq_O_S
-// qed.
-
-theorem times_n_SO : ∀n:nat. n = n * S O.
-#n // qed.
-
-theorem times_SSO_n : ∀n:nat. n + n = (S(S O)) * n.
-normalize // qed.
-
-nlemma times_SSO: \forall n.(S(S O))*(S n) = S(S((S(S O))*n)).
+theorem minus_S_S: ∀n,m:nat.S n - S m = n -m.
// qed.
-theorem or_eq_eq_S: \forall n.\exists m.
-n = (S(S O))*m \lor n = S ((S(S O))*m).
-#n (elim n)
- ##[@ /2/
- ##|#a #H nelim H #b#ornelim or#aeq
- ##[@ b @ 2 //
- ##|@ (S b) @ 1 /2/
- ##]
-qed.
-*)
-
-(******************** ordering relations ************************)
-
-inductive le (n:nat) : nat → Prop ≝
- | le_n : le n n
- | le_S : ∀ m:nat. le n m → le n (S m).
-
-interpretation "natural 'less or equal to'" 'leq x y = (le x y).
-
-interpretation "natural 'neither less nor equal to'" 'nleq x y = (Not (le x y)).
+theorem minus_O_n: ∀n:nat.0=0-n.
+#n (cases n) // qed.
-definition lt: nat → nat → Prop ≝ λn,m. S n ≤ m.
+theorem minus_n_O: ∀n:nat.n=n-0.
+#n (cases n) // qed.
-interpretation "natural 'less than'" 'lt x y = (lt x y).
-interpretation "natural 'not less than'" 'nless x y = (Not (lt x y)).
+theorem minus_n_n: ∀n:nat.0=n-n.
+#n (elim n) // qed.
-(* lemma eq_lt: ∀n,m. (n < m) = (S n ≤ m).
-// qed. *)
+theorem minus_Sn_n: ∀n:nat. S 0 = (S n)-n.
+#n (elim n) normalize // qed.
-definition ge: nat → nat → Prop ≝ λn,m.m ≤ n.
+theorem eq_minus_S_pred: ∀n,m. n - (S m) = pred(n -m).
+@nat_elim2 normalize // qed.
-interpretation "natural 'greater or equal to'" 'geq x y = (ge x y).
+(* Negated equalities *******************************************************)
-definition gt: nat → nat → Prop ≝ λn,m.m<n.
+theorem not_eq_O_S : ∀n:nat. 0 ≠ S n.
+#n @nmk #eqOS (change with (not_zero O)) >eqOS // qed.
-interpretation "natural 'greater than'" 'gt x y = (gt x y).
-interpretation "natural 'not greater than'" 'ngtr x y = (Not (gt x y)).
+theorem not_eq_n_Sn: ∀n:nat. n ≠ S n.
+#n (elim n) /2/ qed.
-theorem transitive_le : transitive nat le.
-#a #b #c #leab #lebc (elim lebc) /2/
-qed.
+(* Atomic conclusion *******************************************************)
-(*
-theorem trans_le: \forall n,m,p:nat. n \leq m \to m \leq p \to n \leq p
-\def transitive_le. *)
+(* not_zero *)
-theorem transitive_lt: transitive nat lt.
-#a #b #c #ltab #ltbc (elim ltbc) /2/qed.
+theorem lt_to_not_zero : ∀n,m:nat. n < m → not_zero m.
+#n #m #Hlt (elim Hlt) // qed.
-(*
-theorem trans_lt: \forall n,m,p:nat. lt n m \to lt m p \to lt n p
-\def transitive_lt. *)
+(* le *)
theorem le_S_S: ∀n,m:nat. n ≤ m → S n ≤ S m.
#n #m #lenm (elim lenm) /2/ qed.
-theorem le_O_n : ∀n:nat. O ≤ n.
+theorem le_O_n : ∀n:nat. 0 ≤ n.
#n (elim n) /2/ qed.
theorem le_n_Sn : ∀n:nat. n ≤ S n.
/2/ qed.
+theorem transitive_le : transitive nat le.
+#a #b #c #leab #lebc (elim lebc) /2/
+qed.
+
theorem le_pred_n : ∀n:nat. pred n ≤ n.
#n (elim n) // qed.
(* demo *)
/2/ qed-.
-(* this are instances of the le versions
-theorem lt_S_S_to_lt: ∀n,m. S n < S m → n < m.
-/2/ qed.
-
-theorem lt_to_lt_S_S: ∀n,m. n < m → S n < S m.
-/2/ qed. *)
-
-theorem lt_to_not_zero : ∀n,m:nat. n < m → not_zero m.
-#n #m #Hlt (elim Hlt) // qed.
-
-(* lt vs. le *)
-theorem not_le_Sn_O: ∀ n:nat. S n ≰ O.
-#n @nmk #Hlen0 @(lt_to_not_zero ?? Hlen0) qed.
-
-theorem not_le_to_not_le_S_S: ∀ n,m:nat. n ≰ m → S n ≰ S m.
-/3/ qed.
-
-theorem not_le_S_S_to_not_le: ∀ n,m:nat. S n ≰ S m → n ≰ m.
-/3/ qed.
-
-theorem decidable_le: ∀n,m. decidable (n≤m).
-@nat_elim2 #n /2/ #m * /3/ qed.
-
-theorem decidable_lt: ∀n,m. decidable (n < m).
-#n #m @decidable_le qed.
-
-theorem not_le_Sn_n: ∀n:nat. S n ≰ n.
-#n (elim n) /2/ qed.
-
-(* this is le_S_S_to_le
-theorem lt_S_to_le: ∀n,m:nat. n < S m → n ≤ m.
-/2/ qed.
-*)
-
-lemma le_gen: ∀P:nat → Prop.∀n.(∀i. i ≤ n → P i) → P n.
-/2/ qed.
-
-theorem not_le_to_lt: ∀n,m. n ≰ m → m < n.
-@nat_elim2 #n
- [#abs @False_ind /2/
- |/2/
- |#m #Hind #HnotleSS @le_S_S /3/
- ]
-qed.
-
-theorem lt_to_not_le: ∀n,m. n < m → m ≰ n.
-#n #m #Hltnm (elim Hltnm) /3/ qed.
-
-theorem not_lt_to_le: ∀n,m:nat. n ≮ m → m ≤ n.
-/4/ qed.
-
-theorem le_to_not_lt: ∀n,m:nat. n ≤ m → m ≮ n.
-#n #m #H @lt_to_not_le /2/ (* /3/ *) qed.
-
-(* lt and le trans *)
-
-theorem lt_to_le_to_lt: ∀n,m,p:nat. n < m → m ≤ p → n < p.
-#n #m #p #H #H1 (elim H1) /2/ qed.
-
-theorem le_to_lt_to_lt: ∀n,m,p:nat. n ≤ m → m < p → n < p.
-#n #m #p #H (elim H) /3/ qed.
-
-theorem lt_S_to_lt: ∀n,m. S n < m → n < m.
-/2/ qed.
-
-theorem ltn_to_ltO: ∀n,m:nat. n < m → O < m.
-/2/ qed.
-
-(*
-theorem lt_SO_n_to_lt_O_pred_n: \forall n:nat.
-(S O) \lt n \to O \lt (pred n).
-intros.
-apply (ltn_to_ltO (pred (S O)) (pred n) ?).
- apply (lt_pred (S O) n)
- [ apply (lt_O_S O)
- | assumption
- ]
-qed. *)
-
-theorem lt_O_n_elim: ∀n:nat. O < n →
- ∀P:nat → Prop.(∀m:nat.P (S m)) → P n.
-#n (elim n) // #abs @False_ind /2/
-qed.
-
-theorem S_pred: ∀n. 0 < n → S(pred n) = n.
-#n #posn (cases posn) //
-qed.
-
-(*
-theorem lt_pred: \forall n,m.
- O < n \to n < m \to pred n < pred m.
-apply nat_elim2
- [intros.apply False_ind.apply (not_le_Sn_O ? H)
- |intros.apply False_ind.apply (not_le_Sn_O ? H1)
- |intros.simplify.unfold.apply le_S_S_to_le.assumption
- ]
-qed.
-
-theorem le_pred_to_le:
- ∀n,m. O < m → pred n ≤ pred m → n ≤ m.
-intros 2
-elim n
-[ apply le_O_n
-| simplify in H2
- rewrite > (S_pred m)
- [ apply le_S_S
- assumption
- | assumption
- ]
-].
-qed.
-
-*)
-
-(* le to lt or eq *)
-theorem le_to_or_lt_eq: ∀n,m:nat. n ≤ m → n < m ∨ n = m.
-#n #m #lenm (elim lenm) /3/ qed.
-
-(* not eq *)
-theorem lt_to_not_eq : ∀n,m:nat. n < m → n ≠ m.
-#n #m #H @not_to_not /2/ qed.
-
-(*not lt
-theorem eq_to_not_lt: ∀a,b:nat. a = b → a ≮ b.
-intros.
-unfold Not.
-intros.
-rewrite > H in H1.
-apply (lt_to_not_eq b b)
-[ assumption
-| reflexivity
-]
-qed.
-
-theorem lt_n_m_to_not_lt_m_Sn: ∀n,m. n < m → m ≮ S n.
-intros
-unfold Not
-intro
-unfold lt in H
-unfold lt in H1
-generalize in match (le_S_S ? ? H)
-intro
-generalize in match (transitive_le ? ? ? H2 H1)
-intro
-apply (not_le_Sn_n ? H3).
-qed. *)
-
-theorem not_eq_to_le_to_lt: ∀n,m. n≠m → n≤m → n<m.
-#n #m #Hneq #Hle cases (le_to_or_lt_eq ?? Hle) //
-#Heq /3/ qed-.
-(*
-nelim (Hneq Heq) qed. *)
-
-(* le elimination *)
-theorem le_n_O_to_eq : ∀n:nat. n ≤ O → O=n.
-#n (cases n) // #a #abs @False_ind /2/ qed.
-
-theorem le_n_O_elim: ∀n:nat. n ≤ O → ∀P: nat →Prop. P O → P n.
-#n (cases n) // #a #abs @False_ind /2/ qed.
-
-theorem le_n_Sm_elim : ∀n,m:nat.n ≤ S m →
-∀P:Prop. (S n ≤ S m → P) → (n=S m → P) → P.
-#n #m #Hle #P (elim Hle) /3/ qed.
-
-(* le and eq *)
-
-theorem le_to_le_to_eq: ∀n,m. n ≤ m → m ≤ n → n = m.
-@nat_elim2 /4/
-qed.
-
-theorem lt_O_S : ∀n:nat. O < S n.
-/2/ qed.
-
-(*
-(* other abstract properties *)
-theorem antisymmetric_le : antisymmetric nat le.
-unfold antisymmetric.intros 2.
-apply (nat_elim2 (\lambda n,m.(n \leq m \to m \leq n \to n=m))).
-intros.apply le_n_O_to_eq.assumption.
-intros.apply False_ind.apply (not_le_Sn_O ? H).
-intros.apply eq_f.apply H.
-apply le_S_S_to_le.assumption.
-apply le_S_S_to_le.assumption.
-qed.
-
-theorem antisym_le: \forall n,m:nat. n \leq m \to m \leq n \to n=m
-\def antisymmetric_le.
-
-theorem le_n_m_to_lt_m_Sn_to_eq_n_m: ∀n,m. n ≤ m → m < S n → n=m.
-intros
-unfold lt in H1
-generalize in match (le_S_S_to_le ? ? H1)
-intro
-apply antisym_le
-assumption.
-qed.
-*)
-
-(* well founded induction principles *)
-
-theorem nat_elim1 : ∀n:nat.∀P:nat → Prop.
-(∀m.(∀p. p < m → P p) → P m) → P n.
-#n #P #H
-cut (∀q:nat. q ≤ n → P q) /2/
-(elim n)
- [#q #HleO (* applica male *)
- @(le_n_O_elim ? HleO)
- @H #p #ltpO @False_ind /2/ (* 3 *)
- |#p #Hind #q #HleS
- @H #a #lta @Hind @le_S_S_to_le /2/
- ]
-qed.
-
-(* some properties of functions *)
-
-definition increasing ≝ λf:nat → nat. ∀n:nat. f n < f (S n).
-
-theorem increasing_to_monotonic: ∀f:nat → nat.
- increasing f → monotonic nat lt f.
-#f #incr #n #m #ltnm (elim ltnm) /2/
-qed.
-
-theorem le_n_fn: ∀f:nat → nat.
- increasing f → ∀n:nat. n ≤ f n.
-#f #incr #n (elim n) /2/
-qed-.
-
-theorem increasing_to_le: ∀f:nat → nat.
- increasing f → ∀m:nat.∃i.m ≤ f i.
-#f #incr #m (elim m) /2/#n * #a #lenfa
-@(ex_intro ?? (S a)) /2/
-qed.
-
-theorem increasing_to_le2: ∀f:nat → nat. increasing f →
- ∀m:nat. f 0 ≤ m → ∃i. f i ≤ m ∧ m < f (S i).
-#f #incr #m #lem (elim lem)
- [@(ex_intro ? ? O) /2/
- |#n #len * #a * #len #ltnr (cases(le_to_or_lt_eq … ltnr)) #H
- [@(ex_intro ? ? a) % /2/
- |@(ex_intro ? ? (S a)) % //
- ]
- ]
-qed.
-
-theorem increasing_to_injective: ∀f:nat → nat.
- increasing f → injective nat nat f.
-#f #incr #n #m cases(decidable_le n m)
- [#lenm cases(le_to_or_lt_eq … lenm) //
- #lenm #eqf @False_ind @(absurd … eqf) @lt_to_not_eq
- @increasing_to_monotonic //
- |#nlenm #eqf @False_ind @(absurd … eqf) @sym_not_eq
- @lt_to_not_eq @increasing_to_monotonic /2/
- ]
-qed.
-
-(*********************** monotonicity ***************************)
theorem monotonic_le_plus_r:
∀n:nat.monotonic nat le (λm.n + m).
#n #a #b (elim n) normalize //
#m #H #leab @le_S_S /2/ qed.
-(*
-theorem le_plus_r: ∀p,n,m:nat. n ≤ m → p + n ≤ p + m
-≝ monotonic_le_plus_r. *)
-
theorem monotonic_le_plus_l:
∀m:nat.monotonic nat le (λn.n + m).
/2/ qed.
-(*
-theorem le_plus_l: \forall p,n,m:nat. n \le m \to n + p \le m + p
-\def monotonic_le_plus_l. *)
-
theorem le_plus: ∀n1,n2,m1,m2:nat. n1 ≤ n2 → m1 ≤ m2
→ n1 + m1 ≤ n2 + m2.
#n1 #n2 #m1 #m2 #len #lem @(transitive_le ? (n1+m2))
/2/ qed.
lemma le_plus_a: ∀a,n,m. n ≤ m → n ≤ a + m.
-/2/ qed.
-
-lemma le_plus_b: ∀b,n,m. n + b ≤ m → n ≤ m.
-/2/ qed.
-
-theorem le_plus_n_r :∀n,m:nat. m ≤ m + n.
-/2/ qed.
-
-theorem eq_plus_to_le: ∀n,m,p:nat.n=m+p → m ≤ n.
-// qed-.
-
-theorem le_plus_to_le: ∀a,n,m. a + n ≤ a + m → n ≤ m.
-#a (elim a) normalize /3/ qed.
-
-theorem le_plus_to_le_r: ∀a,n,m. n + a ≤ m +a → n ≤ m.
-/2/ qed-.
-
-(* plus & lt *)
-
-theorem monotonic_lt_plus_r:
-∀n:nat.monotonic nat lt (λm.n+m).
-/2/ qed.
-
-(*
-variant lt_plus_r: \forall n,p,q:nat. p < q \to n + p < n + q \def
-monotonic_lt_plus_r. *)
-
-theorem monotonic_lt_plus_l:
-∀n:nat.monotonic nat lt (λm.m+n).
-/2/ qed.
-
-(*
-variant lt_plus_l: \forall n,p,q:nat. p < q \to p + n < q + n \def
-monotonic_lt_plus_l. *)
-
-theorem lt_plus: ∀n,m,p,q:nat. n < m → p < q → n + p < m + q.
-#n #m #p #q #ltnm #ltpq
-@(transitive_lt ? (n+q))/2/ qed.
+/2/ qed.
-theorem lt_plus_to_lt_l :∀n,p,q:nat. p+n < q+n → p<q.
+lemma le_plus_b: ∀b,n,m. n + b ≤ m → n ≤ m.
/2/ qed.
-theorem lt_plus_to_lt_r :∀n,p,q:nat. n+p < n+q → p<q.
-/2/ qed-.
+theorem le_plus_n_r :∀n,m:nat. m ≤ m + n.
+/2/ qed.
+
+theorem eq_plus_to_le: ∀n,m,p:nat.n=m+p → m ≤ n.
+// qed-.
+
+theorem le_plus_to_le: ∀a,n,m. a + n ≤ a + m → n ≤ m.
+#a (elim a) normalize /3/ qed.
-(*
-theorem le_to_lt_to_lt_plus: ∀a,b,c,d:nat.
-a ≤ c → b < d → a + b < c+d.
-(* bello /2/ un po' lento *)
-#a #b #c #d #leac #lebd
-normalize napplyS le_plus // qed.
-*)
+theorem le_plus_to_le_r: ∀a,n,m. n + a ≤ m +a → n ≤ m.
+/2/ qed-.
-(* times *)
theorem monotonic_le_times_r:
∀n:nat.monotonic nat le (λm. n * m).
#n #x #y #lexy (elim n) normalize//(* lento /2/*)
#a #lea @le_plus //
qed.
-(*
-theorem le_times_r: \forall p,n,m:nat. n \le m \to p*n \le p*m
-\def monotonic_le_times_r. *)
-
-(*
-theorem monotonic_le_times_l:
-∀m:nat.monotonic nat le (λn.n*m).
-/2/ qed.
-*)
-
-(*
-theorem le_times_l: \forall p,n,m:nat. n \le m \to n*p \le m*p
-\def monotonic_le_times_l. *)
-
theorem le_times: ∀n1,n2,m1,m2:nat.
n1 ≤ n2 → m1 ≤ m2 → n1*m1 ≤ n2*m2.
#n1 #n2 #m1 #m2 #len #lem @(transitive_le ? (n1*m2)) /2/
]
qed-.
-(*
-theorem le_S_times_2: ∀n,m.O < m → n ≤ m → S n ≤ 2*m.
-#n #m #posm #lenm (* interessante *)
-applyS (le_plus n m) // qed. *)
-
-(* times & lt *)
-(*
-theorem lt_O_times_S_S: ∀n,m:nat.O < (S n)*(S m).
-intros.simplify.unfold lt.apply le_S_S.apply le_O_n.
-qed. *)
-
-(*
-theorem lt_times_eq_O: \forall a,b:nat.
-O < a → a * b = O → b = O.
-intros.
-apply (nat_case1 b)
-[ intros.
- reflexivity
-| intros.
- rewrite > H2 in H1.
- rewrite > (S_pred a) in H1
- [ apply False_ind.
- apply (eq_to_not_lt O ((S (pred a))*(S m)))
- [ apply sym_eq.
- assumption
- | apply lt_O_times_S_S
- ]
- | assumption
- ]
-]
-qed.
+theorem le_plus_minus_m_m: ∀n,m:nat. n ≤ (n-m)+m.
+#n (elim n) // #a #Hind #m (cases m) // normalize #n/2/
+qed.
-theorem O_lt_times_to_O_lt: \forall a,c:nat.
-O \lt (a * c) \to O \lt a.
-intros.
-apply (nat_case1 a)
-[ intros.
- rewrite > H1 in H.
- simplify in H.
- assumption
-| intros.
- apply lt_O_S
-]
+theorem le_plus_to_minus_r: ∀a,b,c. a + b ≤ c → a ≤ c -b.
+#a #b #c #H @(le_plus_to_le_r … b) /2/
qed.
-lemma lt_times_to_lt_O: \forall i,n,m:nat. i < n*m \to O < m.
-intros.
-elim (le_to_or_lt_eq O ? (le_O_n m))
- [assumption
- |apply False_ind.
- rewrite < H1 in H.
- rewrite < times_n_O in H.
- apply (not_le_Sn_O ? H)
- ]
-qed. *)
+(* lt *)
-(*
-theorem monotonic_lt_times_r:
-∀n:nat.monotonic nat lt (λm.(S n)*m).
-/2/
-simplify.
-intros.elim n.
-simplify.rewrite < plus_n_O.rewrite < plus_n_O.assumption.
-apply lt_plus.assumption.assumption.
-qed. *)
+theorem transitive_lt: transitive nat lt.
+#a #b #c #ltab #ltbc (elim ltbc) /2/
+qed.
+
+theorem lt_to_le_to_lt: ∀n,m,p:nat. n < m → m ≤ p → n < p.
+#n #m #p #H #H1 (elim H1) /2/ qed.
+
+theorem le_to_lt_to_lt: ∀n,m,p:nat. n ≤ m → m < p → n < p.
+#n #m #p #H (elim H) /3/ qed.
+
+theorem lt_S_to_lt: ∀n,m. S n < m → n < m.
+/2/ qed.
+
+theorem ltn_to_ltO: ∀n,m:nat. n < m → 0 < m.
+/2/ qed.
+
+theorem lt_O_S : ∀n:nat. O < S n.
+/2/ qed.
+
+theorem monotonic_lt_plus_r:
+∀n:nat.monotonic nat lt (λm.n+m).
+/2/ qed.
+
+theorem monotonic_lt_plus_l:
+∀n:nat.monotonic nat lt (λm.m+n).
+/2/ qed.
+
+theorem lt_plus: ∀n,m,p,q:nat. n < m → p < q → n + p < m + q.
+#n #m #p #q #ltnm #ltpq
+@(transitive_lt ? (n+q))/2/ qed.
+
+theorem lt_plus_to_lt_l :∀n,p,q:nat. p+n < q+n → p<q.
+/2/ qed.
+
+theorem lt_plus_to_lt_r :∀n,p,q:nat. n+p < n+q → p<q.
+/2/ qed-.
+
+theorem increasing_to_monotonic: ∀f:nat → nat.
+ increasing f → monotonic nat lt f.
+#f #incr #n #m #ltnm (elim ltnm) /2/
+qed.
theorem monotonic_lt_times_r:
∀c:nat. O < c → monotonic nat lt (λt.(c*t)).
qed.
theorem monotonic_lt_times_l:
- ∀c:nat. O < c → monotonic nat lt (λt.(t*c)).
+ ∀c:nat. 0 < c → monotonic nat lt (λt.(t*c)).
/2/
qed.
#n #m #p #q #ltnm #ltpq @lt_to_le_to_lt_times/2/
qed.
-theorem lt_times_n_to_lt_l:
-∀n,p,q:nat. p*n < q*n → p < q.
-#n #p #q #Hlt (elim (decidable_lt p q)) //
-#nltpq @False_ind @(absurd ? ? (lt_to_not_le ? ? Hlt))
-applyS monotonic_le_times_r /2/
+theorem lt_plus_to_minus_r: ∀a,b,c. a + b < c → a < c - b.
+#a #b #c #H @le_plus_to_minus_r //
qed.
-theorem lt_times_n_to_lt_r:
-∀n,p,q:nat. n*p < n*q → p < q.
-/2/ qed-.
+(* not le, lt *)
+
+theorem not_le_Sn_O: ∀ n:nat. S n ≰ 0.
+#n @nmk #Hlen0 @(lt_to_not_zero ?? Hlen0) qed.
+
+theorem not_le_to_not_le_S_S: ∀ n,m:nat. n ≰ m → S n ≰ S m.
+/3/ qed.
+
+theorem not_le_S_S_to_not_le: ∀ n,m:nat. S n ≰ S m → n ≰ m.
+/3/ qed.
+
+theorem not_le_Sn_n: ∀n:nat. S n ≰ n.
+#n (elim n) /2/ qed.
+
+theorem lt_to_not_le: ∀n,m. n < m → m ≰ n.
+#n #m #Hltnm (elim Hltnm) /3/ qed.
+
+theorem not_le_to_lt: ∀n,m. n ≰ m → m < n.
+@nat_elim2 #n
+ [#abs @False_ind /2/
+ |/2/
+ |#m #Hind #HnotleSS @le_S_S /3/
+ ]
+qed.
+
+(* not lt, le *)
+
+theorem not_lt_to_le: ∀n,m:nat. n ≮ m → m ≤ n.
+/4/ qed.
+
+theorem le_to_not_lt: ∀n,m:nat. n ≤ m → m ≮ n.
+#n #m #H @lt_to_not_le /2/ (* /3/ *) qed.
+
+(* Compound conclusion ******************************************************)
+
+theorem decidable_eq_nat : ∀n,m:nat.decidable (n=m).
+@nat_elim2 #n [ (cases n) /2/ | /3/ | #m #Hind (cases Hind) /3/]
+qed.
-(*
-theorem nat_compare_times_l : \forall n,p,q:nat.
-nat_compare p q = nat_compare ((S n) * p) ((S n) * q).
-intros.apply nat_compare_elim.intro.
-apply nat_compare_elim.
-intro.reflexivity.
-intro.absurd (p=q).
-apply (inj_times_r n).assumption.
-apply lt_to_not_eq. assumption.
-intro.absurd (q<p).
-apply (lt_times_to_lt_r n).assumption.
-apply le_to_not_lt.apply lt_to_le.assumption.
-intro.rewrite < H.rewrite > nat_compare_n_n.reflexivity.
-intro.apply nat_compare_elim.intro.
-absurd (p<q).
-apply (lt_times_to_lt_r n).assumption.
-apply le_to_not_lt.apply lt_to_le.assumption.
-intro.absurd (q=p).
-symmetry.
-apply (inj_times_r n).assumption.
-apply lt_to_not_eq.assumption.
-intro.reflexivity.
-qed. *)
-
-(* times and plus
-theorem lt_times_plus_times: \forall a,b,n,m:nat.
-a < n \to b < m \to a*m + b < n*m.
-intros 3.
-apply (nat_case n)
- [intros.apply False_ind.apply (not_le_Sn_O ? H)
- |intros.simplify.
- rewrite < sym_plus.
- unfold.
- change with (S b+a*m1 \leq m1+m*m1).
- apply le_plus
- [assumption
- |apply le_times
- [apply le_S_S_to_le.assumption
- |apply le_n
- ]
+theorem decidable_le: ∀n,m. decidable (n≤m).
+@nat_elim2 #n /2/ #m * /3/ qed.
+
+theorem decidable_lt: ∀n,m. decidable (n < m).
+#n #m @decidable_le qed.
+
+theorem le_to_or_lt_eq: ∀n,m:nat. n ≤ m → n < m ∨ n = m.
+#n #m #lenm (elim lenm) /3/ qed.
+
+theorem increasing_to_le2: ∀f:nat → nat. increasing f →
+ ∀m:nat. f 0 ≤ m → ∃i. f i ≤ m ∧ m < f (S i).
+#f #incr #m #lem (elim lem)
+ [@(ex_intro ? ? O) /2/
+ |#n #len * #a * #len #ltnr (cases(le_to_or_lt_eq … ltnr)) #H
+ [@(ex_intro ? ? a) % /2/
+ |@(ex_intro ? ? (S a)) % //
]
]
-qed. *)
+qed.
-(************************** minus ******************************)
+(* More general conclusion **************************************************)
-let rec minus n m ≝
- match n with
- [ O ⇒ O
- | S p ⇒
- match m with
- [ O ⇒ S p
- | S q ⇒ minus p q ]].
-
-interpretation "natural minus" 'minus x y = (minus x y).
+theorem lt_O_n_elim: ∀n:nat. 0 < n →
+ ∀P:nat → Prop.(∀m:nat.P (S m)) → P n.
+#n (elim n) // #abs @False_ind /2/ @absurd
+qed.
-theorem minus_S_S: ∀n,m:nat.S n - S m = n -m.
-// qed.
+theorem le_n_O_elim: ∀n:nat. n ≤ O → ∀P: nat →Prop. P O → P n.
+#n (cases n) // #a #abs @False_ind /2/ qed.
-theorem minus_O_n: ∀n:nat.O=O-n.
-#n (cases n) // qed.
+theorem le_n_Sm_elim : ∀n,m:nat.n ≤ S m →
+∀P:Prop. (S n ≤ S m → P) → (n=S m → P) → P.
+#n #m #Hle #P (elim Hle) /3/ qed.
-theorem minus_n_O: ∀n:nat.n=n-O.
-#n (cases n) // qed.
+theorem nat_elim1 : ∀n:nat.∀P:nat → Prop.
+(∀m.(∀p. p < m → P p) → P m) → P n.
+#n #P #H
+cut (∀q:nat. q ≤ n → P q) /2/
+(elim n)
+ [#q #HleO (* applica male *)
+ @(le_n_O_elim ? HleO)
+ @H #p #ltpO @False_ind /2/ (* 3 *)
+ |#p #Hind #q #HleS
+ @H #a #lta @Hind @le_S_S_to_le /2/
+ ]
+qed.
-theorem minus_n_n: ∀n:nat.O=n-n.
-#n (elim n) // qed.
+(* More negated equalities **************************************************)
-theorem minus_Sn_n: ∀n:nat. S O = (S n)-n.
-#n (elim n) normalize // qed.
+theorem lt_to_not_eq : ∀n,m:nat. n < m → n ≠ m.
+#n #m #H @not_to_not /2/ qed.
+
+(* More equalities **********************************************************)
+
+theorem le_n_O_to_eq : ∀n:nat. n ≤ 0 → 0=n.
+#n (cases n) // #a #abs @False_ind /2/ qed.
+
+theorem le_to_le_to_eq: ∀n,m. n ≤ m → m ≤ n → n = m.
+@nat_elim2 /4/
+qed.
+
+theorem increasing_to_injective: ∀f:nat → nat.
+ increasing f → injective nat nat f.
+#f #incr #n #m cases(decidable_le n m)
+ [#lenm cases(le_to_or_lt_eq … lenm) //
+ #lenm #eqf @False_ind @(absurd … eqf) @lt_to_not_eq
+ @increasing_to_monotonic //
+ |#nlenm #eqf @False_ind @(absurd … eqf) @sym_not_eq
+ @lt_to_not_eq @increasing_to_monotonic /2/
+ ]
+qed.
theorem minus_Sn_m: ∀m,n:nat. m ≤ n → S n -m = S (n-m).
(* qualcosa da capire qui
]
qed.
-(*
-theorem not_eq_to_le_to_le_minus:
- ∀n,m.n ≠ m → n ≤ m → n ≤ m - 1.
-#n * #m (cases m// #m normalize
-#H #H1 napply le_S_S_to_le
-napplyS (not_eq_to_le_to_lt n (S m) H H1)
-qed. *)
-
-theorem eq_minus_S_pred: ∀n,m. n - (S m) = pred(n -m).
-@nat_elim2 normalize // qed.
-
theorem plus_minus:
∀m,n,p:nat. m ≤ n → (n-m)+p = (n+p)-m.
@nat_elim2
m ≤ n → n = (n-m)+m.
#n #m #lemn @sym_eq /2/ qed.
-theorem le_plus_minus_m_m: ∀n,m:nat. n ≤ (n-m)+m.
-#n (elim n) // #a #Hind #m (cases m) // normalize #n/2/
-qed.
-
theorem minus_to_plus :∀n,m,p:nat.
m ≤ n → n-m = p → n = m+p.
#n #m #p #lemn #eqp (applyS plus_minus_m_m) //
#n #m #posn #posm @(lt_O_n_elim n posn) @(lt_O_n_elim m posm) //.
qed.
+(* More atomic conclusion ***************************************************)
-(*
-
-theorem le_SO_minus: \forall n,m:nat.S n \leq m \to S O \leq m-n.
-intros.elim H.elim (minus_Sn_n n).apply le_n.
-rewrite > minus_Sn_m.
-apply le_S.assumption.
-apply lt_to_le.assumption.
-qed.
-
-theorem minus_le_S_minus_S: \forall n,m:nat. m-n \leq S (m-(S n)).
-intros.
-apply (nat_elim2 (\lambda n,m.m-n \leq S (m-(S n)))).
-intro.elim n1.simplify.apply le_n_Sn.
-simplify.rewrite < minus_n_O.apply le_n.
-intros.simplify.apply le_n_Sn.
-intros.simplify.apply H.
-qed.
-
-theorem lt_minus_S_n_to_le_minus_n : \forall n,m,p:nat. m-(S n) < p \to m-n \leq p.
-intros 3.intro.
-(* autobatch *)
-(* end auto($Revision: 9739 $) proof: TIME=1.33 SIZE=100 DEPTH=100 *)
-apply (trans_le (m-n) (S (m-(S n))) p).
-apply minus_le_S_minus_S.
-assumption.
-qed.
-
-theorem le_minus_m: \forall n,m:nat. n-m \leq n.
-intros.apply (nat_elim2 (\lambda m,n. n-m \leq n)).
-intros.rewrite < minus_n_O.apply le_n.
-intros.simplify.apply le_n.
-intros.simplify.apply le_S.assumption.
-qed.
-
-theorem lt_minus_m: \forall n,m:nat. O < n \to O < m \to n-m \lt n.
-intros.apply (lt_O_n_elim n H).intro.
-apply (lt_O_n_elim m H1).intro.
-simplify.unfold lt.apply le_S_S.apply le_minus_m.
-qed.
-
-theorem minus_le_O_to_le: \forall n,m:nat. n-m \leq O \to n \leq m.
-intros 2.
-apply (nat_elim2 (\lambda n,m:nat.n-m \leq O \to n \leq m)).
-intros.apply le_O_n.
-simplify.intros. assumption.
-simplify.intros.apply le_S_S.apply H.assumption.
-qed.
-*)
+(* le *)
-(* monotonicity and galois *)
+theorem le_n_fn: ∀f:nat → nat.
+ increasing f → ∀n:nat. n ≤ f n.
+#f #incr #n (elim n) /2/
+qed-.
theorem monotonic_le_minus_l:
∀p,q,n:nat. q ≤ p → q-n ≤ p-n.
theorem le_plus_to_minus: ∀n,m,p. n ≤ p+m → n-m ≤ p.
#n #m #p #lep /2/ qed.
-theorem le_plus_to_minus_r: ∀a,b,c. a + b ≤ c → a ≤ c -b.
-#a #b #c #H @(le_plus_to_le_r … b) /2/
+theorem monotonic_le_minus_r:
+∀p,q,n:nat. q ≤ p → n-p ≤ n-q.
+#p #q #n #lepq @le_plus_to_minus
+@(transitive_le … (le_plus_minus_m_m ? q)) /2/
+qed.
+
+theorem increasing_to_le: ∀f:nat → nat.
+ increasing f → ∀m:nat.∃i.m ≤ f i.
+#f #incr #m (elim m) /2/#n * #a #lenfa
+@(ex_intro ?? (S a)) /2/
+qed.
+
+(* lt *)
+
+theorem not_eq_to_le_to_lt: ∀n,m. n≠m → n≤m → n<m.
+#n #m #Hneq #Hle cases (le_to_or_lt_eq ?? Hle) //
+#Heq /3/ qed-.
+
+theorem lt_times_n_to_lt_l:
+∀n,p,q:nat. p*n < q*n → p < q.
+#n #p #q #Hlt (elim (decidable_lt p q)) //
+#nltpq @False_ind @(absurd ? ? (lt_to_not_le ? ? Hlt))
+applyS monotonic_le_times_r /2/
qed.
+theorem lt_times_n_to_lt_r:
+∀n,p,q:nat. n*p < n*q → p < q.
+/2/ qed-.
+
theorem lt_minus_to_plus: ∀a,b,c. a - b < c → a < c + b.
#a #b #c #H @not_le_to_lt
@(not_to_not … (lt_to_not_le …H)) /2/
#n #m #p #lenm #H normalize <minus_Sn_m // @le_plus_to_minus //
qed.
-theorem lt_plus_to_minus_r: ∀a,b,c. a + b < c → a < c - b.
-#a #b #c #H @le_plus_to_minus_r //
-qed.
-
-theorem monotonic_le_minus_r:
-∀p,q,n:nat. q ≤ p → n-p ≤ n-q.
-#p #q #n #lepq @le_plus_to_minus
-@(transitive_le … (le_plus_minus_m_m ? q)) /2/
-qed.
-
theorem monotonic_lt_minus_l: ∀p,q,n. n ≤ q → q < p → q - n < p - n.
#p #q #n #H1 #H2
@lt_plus_to_minus_r <plus_minus_m_m //
qed.
+(* Still more equalities ****************************************************)
+
theorem eq_minus_O: ∀n,m:nat.
n ≤ m → n-m = O.
#n #m #lenm @(le_n_O_elim (n-m)) /2/
]
qed.
-(*
-theorem plus_minus: ∀n,m,p. p ≤ m → (n+m)-p = n +(m-p).
-#n #m #p #lepm @plus_to_minus >(commutative_plus p)
->associative_plus <plus_minus_m_m //
-qed. *)
-
theorem minus_minus: ∀n,m,p:nat. p ≤ m → m ≤ n →
p+(n-m) = n-(m-p).
#n #m #p #lepm #lemn
theorem lt_to_leb_false: ∀n,m. m < n → leb n m = false.
/3/ qed.
-(* serve anche ltb?
-ndefinition ltb ≝λn,m. leb (S n) m.
-
-theorem ltb_elim: ∀n,m:nat. ∀P:bool → Prop.
-(n < m → P true) → (n ≮ m → P false) → P (ltb n m).
-#n #m #P #Hlt #Hnlt
-napply leb_elim /3/ qed.
-
-theorem ltb_true_to_lt:∀n,m.ltb n m = true → n < m.
-#n #m #Hltb napply leb_true_to_le nassumption
-qed.
-
-theorem ltb_false_to_not_lt:∀n,m.
- ltb n m = false → n ≮ m.
-#n #m #Hltb napply leb_false_to_not_le nassumption
-qed.
-
-theorem lt_to_ltb_true: ∀n,m. n < m → ltb n m = true.
-#n #m #Hltb napply le_to_leb_true nassumption
-qed.
-
-theorem le_to_ltb_false: ∀n,m. m \le n → ltb n m = false.
-#n #m #Hltb napply lt_to_leb_false /2/
-qed. *)
-
(* min e max *)
definition min: nat →nat →nat ≝
λn.λm. if_then_else ? (leb n m) n m.
--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+(*
+theorem inj_S : \forall n,m:nat.(S n)=(S m) \to n=m.
+//. qed.
+
+theorem plus_Sn_m: ∀n,m:nat. S (n + m) = S n + m.
+// qed.
+
+theorem plus_Sn_m1: ∀n,m:nat. S m + n = n + S m.
+#n (elim n) normalize // qed.
+
+
+(* deleterio? *)
+theorem plus_n_1 : ∀n:nat. S n = n+1.
+// qed.
+
+theorem inj_plus_r: \forall p,n,m:nat. p+n = p+m \to n=m
+\def injective_plus_r.
+
+theorem injective_plus_l: ∀m:nat.injective nat nat (λn.n+m).
+/2/ qed.
+
+theorem inj_plus_l: \forall p,n,m:nat. n+p = m+p \to n=m
+\def injective_plus_l.
+
+variant sym_times : \forall n,m:nat. n*m = m*n \def
+symmetric_times.
+
+theorem times_O_to_O: ∀n,m:nat.n*m=O → n=O ∨ m=O.
+napply nat_elim2 /2/
+#n #m #H normalize #H1 napply False_ind napply not_eq_O_S
+// qed.
+
+theorem times_n_SO : ∀n:nat. n = n * S O.
+#n // qed.
+
+theorem times_SSO_n : ∀n:nat. n + n = (S(S O)) * n.
+normalize // qed.
+
+nlemma times_SSO: \forall n.(S(S O))*(S n) = S(S((S(S O))*n)).
+// qed.
+
+theorem or_eq_eq_S: \forall n.\exists m.
+n = (S(S O))*m \lor n = S ((S(S O))*m).
+#n (elim n)
+ ##[@ /2/
+ ##|#a #H nelim H #b#ornelim or#aeq
+ ##[@ b @ 2 //
+ ##|@ (S b) @ 1 /2/
+ ##]
+qed.
+
+lemma eq_lt: ∀n,m. (n < m) = (S n ≤ m).
+// qed.
+
+theorem trans_le: \forall n,m,p:nat. n \leq m \to m \leq p \to n \leq p
+\def transitive_le.
+
+theorem trans_lt: \forall n,m,p:nat. lt n m \to lt m p \to lt n p
+\def transitive_lt.
+
+(* this are instances of the le versions *)
+theorem lt_S_S_to_lt: ∀n,m. S n < S m → n < m.
+/2/ qed.
+
+theorem lt_to_lt_S_S: ∀n,m. n < m → S n < S m.
+/2/ qed.
+
+(* this is le_S_S_to_le *)
+theorem lt_S_to_le: ∀n,m:nat. n < S m → n ≤ m.
+/2/ qed.
+
+theorem lt_SO_n_to_lt_O_pred_n: \forall n:nat.
+(S O) \lt n \to O \lt (pred n).
+intros.
+apply (ltn_to_ltO (pred (S O)) (pred n) ?).
+ apply (lt_pred (S O) n)
+ [ apply (lt_O_S O)
+ | assumption
+ ]
+qed.
+
+theorem lt_pred: \forall n,m.
+ O < n \to n < m \to pred n < pred m.
+apply nat_elim2
+ [intros.apply False_ind.apply (not_le_Sn_O ? H)
+ |intros.apply False_ind.apply (not_le_Sn_O ? H1)
+ |intros.simplify.unfold.apply le_S_S_to_le.assumption
+ ]
+qed.
+
+theorem le_pred_to_le:
+ ∀n,m. O < m → pred n ≤ pred m → n ≤ m.
+intros 2
+elim n
+[ apply le_O_n
+| simplify in H2
+ rewrite > (S_pred m)
+ [ apply le_S_S
+ assumption
+ | assumption
+ ]
+].
+qed.
+
+theorem eq_to_not_lt: ∀a,b:nat. a = b → a ≮ b.
+intros.
+unfold Not.
+intros.
+rewrite > H in H1.
+apply (lt_to_not_eq b b)
+[ assumption
+| reflexivity
+]
+qed.
+
+theorem lt_n_m_to_not_lt_m_Sn: ∀n,m. n < m → m ≮ S n.
+intros
+unfold Not
+intro
+unfold lt in H
+unfold lt in H1
+generalize in match (le_S_S ? ? H)
+intro
+generalize in match (transitive_le ? ? ? H2 H1)
+intro
+apply (not_le_Sn_n ? H3).
+qed.
+
+(* other abstract properties *)
+theorem antisymmetric_le : antisymmetric nat le.
+unfold antisymmetric.intros 2.
+apply (nat_elim2 (\lambda n,m.(n \leq m \to m \leq n \to n=m))).
+intros.apply le_n_O_to_eq.assumption.
+intros.apply False_ind.apply (not_le_Sn_O ? H).
+intros.apply eq_f.apply H.
+apply le_S_S_to_le.assumption.
+apply le_S_S_to_le.assumption.
+qed.
+
+theorem antisym_le: \forall n,m:nat. n \leq m \to m \leq n \to n=m
+\def antisymmetric_le.
+
+theorem le_n_m_to_lt_m_Sn_to_eq_n_m: ∀n,m. n ≤ m → m < S n → n=m.
+intros
+unfold lt in H1
+generalize in match (le_S_S_to_le ? ? H1)
+intro
+apply antisym_le
+assumption.
+qed.
+
+theorem le_plus_r: ∀p,n,m:nat. n ≤ m → p + n ≤ p + m
+≝ monotonic_le_plus_r.
+
+theorem le_plus_l: \forall p,n,m:nat. n \le m \to n + p \le m + p
+\def monotonic_le_plus_l.
+
+variant lt_plus_r: \forall n,p,q:nat. p < q \to n + p < n + q \def
+monotonic_lt_plus_r.
+
+variant lt_plus_l: \forall n,p,q:nat. p < q \to p + n < q + n \def
+monotonic_lt_plus_l.
+
+theorem le_to_lt_to_lt_plus: ∀a,b,c,d:nat.
+a ≤ c → b < d → a + b < c+d.
+(* bello /2/ un po' lento *)
+#a #b #c #d #leac #lebd
+normalize napplyS le_plus // qed.
+
+theorem le_times_r: \forall p,n,m:nat. n \le m \to p*n \le p*m
+\def monotonic_le_times_r.
+
+theorem monotonic_le_times_l:
+∀m:nat.monotonic nat le (λn.n*m).
+/2/ qed.
+
+theorem le_times_l: \forall p,n,m:nat. n \le m \to n*p \le m*p
+\def monotonic_le_times_l.
+
+theorem le_S_times_2: ∀n,m.O < m → n ≤ m → S n ≤ 2*m.
+#n #m #posm #lenm (* interessante *)
+applyS (le_plus n m) // qed.
+
+theorem lt_O_times_S_S: ∀n,m:nat.O < (S n)*(S m).
+intros.simplify.unfold lt.apply le_S_S.apply le_O_n.
+qed.
+
+theorem lt_times_eq_O: \forall a,b:nat.
+O < a → a * b = O → b = O.
+intros.
+apply (nat_case1 b)
+[ intros.
+ reflexivity
+| intros.
+ rewrite > H2 in H1.
+ rewrite > (S_pred a) in H1
+ [ apply False_ind.
+ apply (eq_to_not_lt O ((S (pred a))*(S m)))
+ [ apply sym_eq.
+ assumption
+ | apply lt_O_times_S_S
+ ]
+ | assumption
+ ]
+]
+qed.
+
+theorem O_lt_times_to_O_lt: \forall a,c:nat.
+O \lt (a * c) \to O \lt a.
+intros.
+apply (nat_case1 a)
+[ intros.
+ rewrite > H1 in H.
+ simplify in H.
+ assumption
+| intros.
+ apply lt_O_S
+]
+qed.
+
+lemma lt_times_to_lt_O: \forall i,n,m:nat. i < n*m \to O < m.
+intros.
+elim (le_to_or_lt_eq O ? (le_O_n m))
+ [assumption
+ |apply False_ind.
+ rewrite < H1 in H.
+ rewrite < times_n_O in H.
+ apply (not_le_Sn_O ? H)
+ ]
+qed.
+
+theorem monotonic_lt_times_r:
+∀n:nat.monotonic nat lt (λm.(S n)*m).
+/2/
+simplify.
+intros.elim n.
+simplify.rewrite < plus_n_O.rewrite < plus_n_O.assumption.
+apply lt_plus.assumption.assumption.
+qed.
+
+theorem nat_compare_times_l : \forall n,p,q:nat.
+nat_compare p q = nat_compare ((S n) * p) ((S n) * q).
+intros.apply nat_compare_elim.intro.
+apply nat_compare_elim.
+intro.reflexivity.
+intro.absurd (p=q).
+apply (inj_times_r n).assumption.
+apply lt_to_not_eq. assumption.
+intro.absurd (q<p).
+apply (lt_times_to_lt_r n).assumption.
+apply le_to_not_lt.apply lt_to_le.assumption.
+intro.rewrite < H.rewrite > nat_compare_n_n.reflexivity.
+intro.apply nat_compare_elim.intro.
+absurd (p<q).
+apply (lt_times_to_lt_r n).assumption.
+apply le_to_not_lt.apply lt_to_le.assumption.
+intro.absurd (q=p).
+symmetry.
+apply (inj_times_r n).assumption.
+apply lt_to_not_eq.assumption.
+intro.reflexivity.
+qed.
+
+theorem lt_times_plus_times: \forall a,b,n,m:nat.
+a < n \to b < m \to a*m + b < n*m.
+intros 3.
+apply (nat_case n)
+ [intros.apply False_ind.apply (not_le_Sn_O ? H)
+ |intros.simplify.
+ rewrite < sym_plus.
+ unfold.
+ change with (S b+a*m1 \leq m1+m*m1).
+ apply le_plus
+ [assumption
+ |apply le_times
+ [apply le_S_S_to_le.assumption
+ |apply le_n
+ ]
+ ]
+ ]
+qed.
+
+theorem not_eq_to_le_to_le_minus:
+ ∀n,m.n ≠ m → n ≤ m → n ≤ m - 1.
+#n * #m (cases m// #m normalize
+#H #H1 napply le_S_S_to_le
+napplyS (not_eq_to_le_to_lt n (S m) H H1)
+qed.
+
+theorem le_SO_minus: \forall n,m:nat.S n \leq m \to S O \leq m-n.
+intros.elim H.elim (minus_Sn_n n).apply le_n.
+rewrite > minus_Sn_m.
+apply le_S.assumption.
+apply lt_to_le.assumption.
+qed.
+
+theorem minus_le_S_minus_S: \forall n,m:nat. m-n \leq S (m-(S n)).
+intros.
+apply (nat_elim2 (\lambda n,m.m-n \leq S (m-(S n)))).
+intro.elim n1.simplify.apply le_n_Sn.
+simplify.rewrite < minus_n_O.apply le_n.
+intros.simplify.apply le_n_Sn.
+intros.simplify.apply H.
+qed.
+
+theorem lt_minus_S_n_to_le_minus_n : \forall n,m,p:nat. m-(S n) < p \to m-n \leq p.
+intros 3.intro.
+(* autobatch *)
+(* end auto($Revision: 9739 $) proof: TIME=1.33 SIZE=100 DEPTH=100 *)
+apply (trans_le (m-n) (S (m-(S n))) p).
+apply minus_le_S_minus_S.
+assumption.
+qed.
+
+theorem le_minus_m: \forall n,m:nat. n-m \leq n.
+intros.apply (nat_elim2 (\lambda m,n. n-m \leq n)).
+intros.rewrite < minus_n_O.apply le_n.
+intros.simplify.apply le_n.
+intros.simplify.apply le_S.assumption.
+qed.
+
+theorem lt_minus_m: \forall n,m:nat. O < n \to O < m \to n-m \lt n.
+intros.apply (lt_O_n_elim n H).intro.
+apply (lt_O_n_elim m H1).intro.
+simplify.unfold lt.apply le_S_S.apply le_minus_m.
+qed.
+
+theorem minus_le_O_to_le: \forall n,m:nat. n-m \leq O \to n \leq m.
+intros 2.
+apply (nat_elim2 (\lambda n,m:nat.n-m \leq O \to n \leq m)).
+intros.apply le_O_n.
+simplify.intros. assumption.
+simplify.intros.apply le_S_S.apply H.assumption.
+qed.
+
+theorem plus_minus: ∀n,m,p. p ≤ m → (n+m)-p = n +(m-p).
+#n #m #p #lepm @plus_to_minus >(commutative_plus p)
+>associative_plus <plus_minus_m_m //
+qed.
+
+(* serve anche ltb? *)
+ndefinition ltb ≝λn,m. leb (S n) m.
+
+theorem ltb_elim: ∀n,m:nat. ∀P:bool → Prop.
+(n < m → P true) → (n ≮ m → P false) → P (ltb n m).
+#n #m #P #Hlt #Hnlt
+napply leb_elim /3/ qed.
+
+theorem ltb_true_to_lt:∀n,m.ltb n m = true → n < m.
+#n #m #Hltb napply leb_true_to_le nassumption
+qed.
+
+theorem ltb_false_to_not_lt:∀n,m.
+ ltb n m = false → n ≮ m.
+#n #m #Hltb napply leb_false_to_not_le nassumption
+qed.
+
+theorem lt_to_ltb_true: ∀n,m. n < m → ltb n m = true.
+#n #m #Hltb napply le_to_leb_true nassumption
+qed.
+
+theorem le_to_ltb_false: ∀n,m. m \le n → ltb n m = false.
+#n #m #Hltb napply lt_to_leb_false /2/
+qed.
+
+*)