ty])
| None ->
prerr_endline "NO NAME!!"; assert false)
- | `Proof p -> proof2pres p
+ | `Proof p ->
+ (match p.Con.proof_name with
+ Some "w" -> prerr_endline ("processing w");
+ | _ -> ());
+ proof2pres p
| `Definition d ->
(match d.Con.def_name with
Some s ->
*)
else if (conclude.Con.conclude_method = "ByInduction") then
byinduction conclude
+ else if (conclude.Con.conclude_method = "Exists") then
+ exists conclude
else if (conclude.Con.conclude_method = "Rewrite") then
let justif =
(match (List.nth conclude.Con.conclude_args 6) with
P.Mtr ([],[P.Mtd ([],induction_on)])::
P.Mtr ([],[P.Mtd ([],to_prove)])::
(make_cases args_for_cases))
-(* OLD CODE
- let we_proved =
- (make_concl "we proved 5" proof_conclusion) in
- P.Mtable
- ([None,"align","baseline 1"; None,"equalrows","false"; None,"columnalign","left"],
- P.Mtr ([],[P.Mtd ([],induction_on)])::
- P.Mtr ([],[P.Mtd ([],to_prove)])::
- (make_cases args_for_cases) @
- [P.Mtr ([],[P.Mtd ([],we_proved)])]) *)
-
+
and make_cases args_for_cases =
let module P = Mpresentation in
List.map
None,"columnalign","left"],
pattern::asubconcl::induction_hypothesis@
[P.Mtr([],[P.Mtd([],presacontext)])])
- | _ -> assert false in
+ | _ -> assert false
+
+ and exists conclude =
+ let module P = Mpresentation in
+ let module Con = Content in
+ let proof_conclusion =
+ (match conclude.Con.conclude_conclusion with
+ None -> P.Mtext([],"No conclusion???")
+ | Some t -> term2pres t) in
+ let proof =
+ (match conclude.Con.conclude_args with
+ [Con.Aux(n);_;Con.ArgProof proof;_] -> proof
+ | _ -> assert false;
+ (*
+ List.map (ContentPp.parg 0) conclude.Con.conclude_args;
+ assert false *)) in
+ match proof.Con.proof_context with
+ `Declaration decl::`Hypothesis hyp::tl
+ | `Hypothesis decl::`Hypothesis hyp::tl ->
+ let get_name decl =
+ (match decl.Con.dec_name with
+ None -> "_"
+ | Some s -> s) in
+ let presdecl =
+ P.Mrow ([],
+ [P.Mtext([None,"mathcolor","Red"],"let");
+ P.smallskip;
+ P.Mi([],get_name decl);
+ P.Mtext([],":"); term2pres decl.Con.dec_type]) in
+ let suchthat =
+ P.Mrow ([],
+ [P.Mtext([None,"mathcolor","Red"],"such that");
+ P.smallskip;
+ P.Mtext([],"(");
+ P.Mi([],get_name hyp);
+ P.Mtext([],")");
+ P.smallskip;
+ term2pres hyp.Con.dec_type]) in
+ (* let body = proof2pres {proof with Con.proof_context = tl} in *)
+ let body = conclude2pres proof.Con.proof_conclude false true in
+ let presacontext =
+ acontext2pres proof.Con.proof_apply_context body false in
+ P.Mtable
+ ([None,"align","baseline 1"; None,"equalrows","false";
+ None,"columnalign","left"],
+ [P.Mtr ([],[P.Mtd ([],presdecl)]);
+ P.Mtr ([],[P.Mtd ([],suchthat)]);
+ P.Mtr ([],[P.Mtd ([],presacontext)])]);
+ | _ -> assert false in
proof2pres p
;;