interpretation "fintersectsS" 'fintersects U V = (fun1 ___ (fintersectsS _) U V).
-definition relS: ∀o: basic_pair. concr o → Ω \sup (form o) → CProp ≝
- λo:basic_pair.λx:concr o.λS: Ω \sup (form o).∃y: form o.y ∈ S ∧ x ⊩ y.
+definition relS: ∀o: basic_pair. binary_morphism1 (concr o) (Ω \sup (form o)) CPROP.
+ intros (o); constructor 1;
+ [ apply (λx:concr o.λS: Ω \sup (form o).∃y: form o.y ∈ S ∧ x ⊩ y);
+ | intros; split; intros; cases H2; exists [1,3: apply w]
+ [ apply (. (#‡H1)‡(H‡#)); assumption
+ | apply (. (#‡H1 \sup -1)‡(H \sup -1‡#)); assumption]]
+qed.
-interpretation "basic pair relation for subsets" 'Vdash2 x y = (fun1 ___ (relS _) x y).
+interpretation "basic pair relation for subsets" 'Vdash2 x y = (fun1 (concr _) __ (relS _) x y).
interpretation "basic pair relation for subsets (non applied)" 'Vdash = (fun1 ___ (relS _)).
-(*
record concrete_space : Type ≝
{ bp:> basic_pair;
converges: ∀a: concr bp.∀U,V: form bp. a ⊩ U → a ⊩ V → a ⊩ (U ↓ V);
all_covered: ∀x: concr bp. x ⊩ form bp
}.
+(*
record convergent_relation_pair (CS1,CS2: concrete_space) : Type ≝
{ rp:> relation_pair CS1 CS2;
respects_converges:
extS ?? (rel CS1) (form CS1)
}.
-(*
definition convergent_relation_space_setoid: concrete_space → concrete_space → setoid.
intros;
constructor 1;
|
]
- |*)
+ |*)
\ No newline at end of file