lemma plus_strong_extr: ∀G:abelian_group.∀z:G.strong_ext ? (λx.x + z).
intros 5 (G z x y A); simplify in A;
lapply (plus_comm ? z x) as E1; lapply (plus_comm ? z y) as E2;
-lapply (ap_rewl ???? E1 A) as A1; lapply (ap_rewr ???? E2 A1) as A2;
+lapply (Ap≪ ? E1 A) as A1; lapply (Ap≫ ? E2 A1) as A2;
apply (plus_strong_ext ???? A2);
qed.
lemma fap_plusl: ∀G:abelian_group.∀x,y,z:G. y # z → x+y # x+z.
intros (G x y z Ayz); apply (plus_strong_ext ? (-x));
-apply (ap_rewl ??? ((-x + x) + y));
+apply (Ap≪ ((-x + x) + y));
[1: apply plus_assoc;
-|2: apply (ap_rewr ??? ((-x +x) +z));
+|2: apply (Ap≫ ((-x +x) +z));
[1: apply plus_assoc;
- |2: apply (ap_rewl ??? (0 + y));
+ |2: apply (Ap≪ (0 + y));
[1: apply (feq_plusr ???? (opp_inverse ??));
- |2: apply (ap_rewl ???? (zero_neutral ? y));
- apply (ap_rewr ??? (0 + z) (opp_inverse ??));
- apply (ap_rewr ???? (zero_neutral ??)); assumption;]]]
+ |2: apply (Ap≪ ? (zero_neutral ? y));
+ apply (Ap≫ (0 + z) (opp_inverse ??));
+ apply (Ap≫ ? (zero_neutral ??)); assumption;]]]
qed.
lemma fap_plusr: ∀G:abelian_group.∀x,y,z:G. y # z → y+x # z+x.
intros (G x y z Ayz); apply (plus_strong_extr ? (-x));
-apply (ap_rewl ??? (y + (x + -x)));
+apply (Ap≪ (y + (x + -x)));
[1: apply (eq_sym ??? (plus_assoc ????));
-|2: apply (ap_rewr ??? (z + (x + -x)));
+|2: apply (Ap≫ (z + (x + -x)));
[1: apply (eq_sym ??? (plus_assoc ????));
- |2: apply (ap_rewl ??? (y + (-x+x)) (plus_comm ? x (-x)));
- apply (ap_rewl ??? (y + 0) (opp_inverse ??));
- apply (ap_rewl ??? (0 + y) (plus_comm ???));
- apply (ap_rewl ??? y (zero_neutral ??));
- apply (ap_rewr ??? (z + (-x+x)) (plus_comm ? x (-x)));
- apply (ap_rewr ??? (z + 0) (opp_inverse ??));
- apply (ap_rewr ??? (0 + z) (plus_comm ???));
- apply (ap_rewr ??? z (zero_neutral ??));
+ |2: apply (Ap≪ (y + (-x+x)) (plus_comm ? x (-x)));
+ apply (Ap≪ (y + 0) (opp_inverse ??));
+ apply (Ap≪ (0 + y) (plus_comm ???));
+ apply (Ap≪ y (zero_neutral ??));
+ apply (Ap≫ (z + (-x+x)) (plus_comm ? x (-x)));
+ apply (Ap≫ (z + 0) (opp_inverse ??));
+ apply (Ap≫ (0 + z) (plus_comm ???));
+ apply (Ap≫ z (zero_neutral ??));
assumption]]
qed.
lemma feq_oppr: ∀G:abelian_group.∀x,y,z:G. y ≈ z → x ≈ -y → x ≈ -z.
intros (G x y z H1 H2); apply (plus_cancr ??? z);
-(* apply (eq_trans ??? 0 ? (opp_inverse ??)); *)
apply (Eq≈ 0 ? (opp_inverse ??));
apply (Eq≈ (-y + z) H2);
apply (Eq≈ (-y + y) H1);
lemma plus_cancl_exc: ∀G:pogroup.∀f,g,h:G. h+f ≰ h+g → f ≰ g.
intros 5 (G x y z L); apply (plus_cancr_exc ??? z);
-apply (exc_rewl ??? (z+x) (plus_comm ???));
-apply (exc_rewr ??? (z+y) (plus_comm ???) L);
+apply (Ex≪ (z+x) (plus_comm ???));
+apply (Ex≫ (z+y) (plus_comm ???) L);
qed.
lemma fexc_plusl:
∀G:pogroup.∀x,y,z:G. x ≰ y → z+x ≰ z+y.
intros 5 (G x y z L); apply (plus_cancl_exc ??? (-z));
-apply (exc_rewl ???? (plus_assoc ??z x));
-apply (exc_rewr ???? (plus_assoc ??z y));
-apply (exc_rewl ??? (0+x) (opp_inverse ??));
-apply (exc_rewr ??? (0+y) (opp_inverse ??));
-apply (exc_rewl ???? (zero_neutral ??));
-apply (exc_rewr ???? (zero_neutral ??) L);
+apply (Ex≪? (plus_assoc ??z x));
+apply (Ex≫? (plus_assoc ??z y));
+apply (Ex≪ (0+x) (opp_inverse ??));
+apply (Ex≫ (0+y) (opp_inverse ??));
+apply (Ex≪? (zero_neutral ??));
+apply (Ex≫? (zero_neutral ??) L);
qed.
coercion cic:/matita/ordered_group/fexc_plusl.con nocomposites.
lemma plus_cancr_le:
∀G:pogroup.∀x,y,z:G.x+z ≤ y + z → x ≤ y.
intros 5 (G x y z L);
-apply (le_rewl ??? (0+x) (zero_neutral ??));
-apply (le_rewl ??? (x+0) (plus_comm ???));
-apply (le_rewl ??? (x+(-z+z)) (opp_inverse ??));
-apply (le_rewl ??? (x+(z+ -z)) (plus_comm ??z));
-apply (le_rewl ??? (x+z+ -z) (plus_assoc ????));
-apply (le_rewr ??? (0+y) (zero_neutral ??));
-apply (le_rewr ??? (y+0) (plus_comm ???));
-apply (le_rewr ??? (y+(-z+z)) (opp_inverse ??));
-apply (le_rewr ??? (y+(z+ -z)) (plus_comm ??z));
-apply (le_rewr ??? (y+z+ -z) (plus_assoc ????));
+apply (Le≪ (0+x) (zero_neutral ??));
+apply (Le≪ (x+0) (plus_comm ???));
+apply (Le≪ (x+(-z+z)) (opp_inverse ??));
+apply (Le≪ (x+(z+ -z)) (plus_comm ??z));
+apply (Le≪ (x+z+ -z) (plus_assoc ????));
+apply (Le≫ (0+y) (zero_neutral ??));
+apply (Le≫ (y+0) (plus_comm ???));
+apply (Le≫ (y+(-z+z)) (opp_inverse ??));
+apply (Le≫ (y+(z+ -z)) (plus_comm ??z));
+apply (Le≫ (y+z+ -z) (plus_assoc ????));
intro H; apply L; clear L; apply (plus_cancr_exc ??? (-z) H);
qed.
lemma fle_plusl: ∀G:pogroup. ∀f,g,h:G. f≤g → h+f≤h+g.
intros (G f g h);
apply (plus_cancr_le ??? (-h));
-apply (le_rewl ??? (f+h+ -h) (plus_comm ? f h));
-apply (le_rewl ??? (f+(h+ -h)) (plus_assoc ????));
-apply (le_rewl ??? (f+(-h+h)) (plus_comm ? h (-h)));
-apply (le_rewl ??? (f+0) (opp_inverse ??));
-apply (le_rewl ??? (0+f) (plus_comm ???));
-apply (le_rewl ??? (f) (zero_neutral ??));
-apply (le_rewr ??? (g+h+ -h) (plus_comm ? h ?));
-apply (le_rewr ??? (g+(h+ -h)) (plus_assoc ????));
-apply (le_rewr ??? (g+(-h+h)) (plus_comm ??h));
-apply (le_rewr ??? (g+0) (opp_inverse ??));
-apply (le_rewr ??? (0+g) (plus_comm ???));
-apply (le_rewr ??? (g) (zero_neutral ??) H);
+apply (Le≪ (f+h+ -h) (plus_comm ? f h));
+apply (Le≪ (f+(h+ -h)) (plus_assoc ????));
+apply (Le≪ (f+(-h+h)) (plus_comm ? h (-h)));
+apply (Le≪ (f+0) (opp_inverse ??));
+apply (Le≪ (0+f) (plus_comm ???));
+apply (Le≪ (f) (zero_neutral ??));
+apply (Le≫ (g+h+ -h) (plus_comm ? h ?));
+apply (Le≫ (g+(h+ -h)) (plus_assoc ????));
+apply (Le≫ (g+(-h+h)) (plus_comm ??h));
+apply (Le≫ (g+0) (opp_inverse ??));
+apply (Le≫ (0+g) (plus_comm ???));
+apply (Le≫ (g) (zero_neutral ??) H);
qed.
lemma fle_plusr: ∀G:pogroup. ∀f,g,h:G. f≤g → f+h≤g+h.
-intros (G f g h H); apply (le_rewl ???? (plus_comm ???));
-apply (le_rewr ???? (plus_comm ???)); apply fle_plusl; assumption;
+intros (G f g h H); apply (Le≪? (plus_comm ???));
+apply (Le≫? (plus_comm ???)); apply fle_plusl; assumption;
qed.
lemma plus_cancl_le:
∀G:pogroup.∀x,y,z:G.z+x ≤ z+y → x ≤ y.
intros 5 (G x y z L);
-apply (le_rewl ??? (0+x) (zero_neutral ??));
-apply (le_rewl ??? ((-z+z)+x) (opp_inverse ??));
-apply (le_rewl ??? (-z+(z+x)) (plus_assoc ????));
-apply (le_rewr ??? (0+y) (zero_neutral ??));
-apply (le_rewr ??? ((-z+z)+y) (opp_inverse ??));
-apply (le_rewr ??? (-z+(z+y)) (plus_assoc ????));
+apply (Le≪ (0+x) (zero_neutral ??));
+apply (Le≪ ((-z+z)+x) (opp_inverse ??));
+apply (Le≪ (-z+(z+x)) (plus_assoc ????));
+apply (Le≫ (0+y) (zero_neutral ??));
+apply (Le≫ ((-z+z)+y) (opp_inverse ??));
+apply (Le≫ (-z+(z+y)) (plus_assoc ????));
apply (fle_plusl ??? (-z) L);
qed.
lemma exc_opp_x_zero_to_exc_zero_x:
∀G:pogroup.∀x:G.-x ≰ 0 → 0 ≰ x.
intros (G x H); apply (plus_cancr_exc ??? (-x));
-apply (exc_rewr ???? (plus_comm ???));
-apply (exc_rewr ???? (opp_inverse ??));
-apply (exc_rewl ???? (zero_neutral ??) H);
+apply (Ex≫? (plus_comm ???));
+apply (Ex≫? (opp_inverse ??));
+apply (Ex≪? (zero_neutral ??) H);
qed.
lemma le_zero_x_to_le_opp_x_zero:
∀G:pogroup.∀x:G.0 ≤ x → -x ≤ 0.
intros (G x Px); apply (plus_cancr_le ??? x);
-apply (le_rewl ??? 0 (opp_inverse ??));
-apply (le_rewr ??? x (zero_neutral ??) Px);
+apply (Le≪ 0 (opp_inverse ??));
+apply (Le≫ x (zero_neutral ??) Px);
qed.
lemma lt_zero_x_to_lt_opp_x_zero:
∀G:pogroup.∀x:G.0 < x → -x < 0.
intros (G x Px); apply (plus_cancr_lt ??? x);
-apply (lt_rewl ??? 0 (opp_inverse ??));
-apply (lt_rewr ??? x (zero_neutral ??) Px);
+apply (Lt≪ 0 (opp_inverse ??));
+apply (Lt≫ x (zero_neutral ??) Px);
qed.
lemma exc_zero_opp_x_to_exc_x_zero:
∀G:pogroup.∀x:G. 0 ≰ -x → x ≰ 0.
intros (G x H); apply (plus_cancl_exc ??? (-x));
-apply (exc_rewr ???? (plus_comm ???));
-apply (exc_rewl ???? (opp_inverse ??));
-apply (exc_rewr ???? (zero_neutral ??) H);
+apply (Ex≫? (plus_comm ???));
+apply (Ex≪? (opp_inverse ??));
+apply (Ex≫? (zero_neutral ??) H);
qed.
lemma le_x_zero_to_le_zero_opp_x:
∀G:pogroup.∀x:G. x ≤ 0 → 0 ≤ -x.
intros (G x Lx0); apply (plus_cancr_le ??? x);
-apply (le_rewr ??? 0 (opp_inverse ??));
-apply (le_rewl ??? x (zero_neutral ??));
+apply (Le≫ 0 (opp_inverse ??));
+apply (Le≪ x (zero_neutral ??));
assumption;
qed.
lemma lt_x_zero_to_lt_zero_opp_x:
∀G:pogroup.∀x:G. x < 0 → 0 < -x.
intros (G x Lx0); apply (plus_cancr_lt ??? x);
-apply (lt_rewr ??? 0 (opp_inverse ??));
-apply (lt_rewl ??? x (zero_neutral ??));
+apply (Lt≫ 0 (opp_inverse ??));
+apply (Lt≪ x (zero_neutral ??));
assumption;
qed.
lemma lt_opp_x_zero_to_lt_zero_x:
∀G:pogroup.∀x:G. -x < 0 → 0 < x.
intros (G x Lx0); apply (plus_cancr_lt ??? (-x));
-apply (lt_rewl ??? (-x) (zero_neutral ??));
-apply (lt_rewr ??? (-x+x) (plus_comm ???));
-apply (lt_rewr ??? 0 (opp_inverse ??));
+apply (Lt≪ (-x) (zero_neutral ??));
+apply (Lt≫ (-x+x) (plus_comm ???));
+apply (Lt≫ 0 (opp_inverse ??));
assumption;
qed.
∀G:pogroup. ∀x,y:G. 0 ≤ x → 0 ≤ y → 0 < x + y → 0 < x ∨ 0 < y.
intros (G x y LEx LEy LT); cases LT (H1 H2); cases (ap_cotransitive ??? y H2);
[right; split; assumption|left;split;[assumption]]
-apply (plus_cancr_ap ??? y); apply (ap_rewl ???? (zero_neutral ??));
+apply (plus_cancr_ap ??? y); apply (Ap≪? (zero_neutral ??));
assumption;
qed.
∀G:pogroup.∀a,b,c:G. 0 ≤ b → a + b ≤ c → a ≤ c.
intros (G a b c L H); apply (le_transitive ????? H);
apply (plus_cancl_le ??? (-a));
-apply (le_rewl ??? 0 (opp_inverse ??));
-apply (le_rewr ??? (-a + a + b) (plus_assoc ????));
-apply (le_rewr ??? (0 + b) (opp_inverse ??));
-apply (le_rewr ??? b (zero_neutral ??));
+apply (Le≪ 0 (opp_inverse ??));
+apply (Le≫ (-a + a + b) (plus_assoc ????));
+apply (Le≫ (0 + b) (opp_inverse ??));
+apply (Le≫ b (zero_neutral ??));
assumption;
qed.
∀G:pogroup.∀a,b:G. 0 ≤ a → 0 ≤ b → 0 ≤ a + b.
intros (G a b L1 L2); apply (le_transitive ???? L1);
apply (plus_cancl_le ??? (-a));
-apply (le_rewl ??? 0 (opp_inverse ??));
-apply (le_rewr ??? (-a + a + b) (plus_assoc ????));
-apply (le_rewr ??? (0 + b) (opp_inverse ??));
-apply (le_rewr ??? b (zero_neutral ??));
+apply (Le≪ 0 (opp_inverse ??));
+apply (Le≫ (-a + a + b) (plus_assoc ????));
+apply (Le≫ (0 + b) (opp_inverse ??));
+apply (Le≫ b (zero_neutral ??));
assumption;
qed.
lemma ltxy_ltyyxx: ∀G:pogroup.∀x,y:G. y < x → y+y < x+x.
intros; apply (lt_transitive ?? (y+x));[2:
- apply (lt_rewl ???? (plus_comm ???));
- apply (lt_rewr ???? (plus_comm ???));]
+ apply (Lt≪? (plus_comm ???));
+ apply (Lt≫? (plus_comm ???));]
apply flt_plusl;assumption;
qed.
intros (O a b c L0 L);
apply (le_transitive ????? L);
apply (plus_cancl_le ??? (-a));
-apply (le_rewr ??? 0 (opp_inverse ??));
-apply (le_rewl ??? (-a+a+-b) (plus_assoc ????));
-apply (le_rewl ??? (0+-b) (opp_inverse ??));
-apply (le_rewl ??? (-b) (zero_neutral ?(-b)));
+apply (Le≫ 0 (opp_inverse ??));
+apply (Le≪ (-a+a+-b) (plus_assoc ????));
+apply (Le≪ (0+-b) (opp_inverse ??));
+apply (Le≪ (-b) (zero_neutral ?(-b)));
apply le_zero_x_to_le_opp_x_zero;
assumption;
qed.
intros (O a b c P L);
apply (lt_transitive ????? L);
apply (plus_cancl_lt ??? (-a));
-apply (lt_rewr ??? 0 (opp_inverse ??));
-apply (lt_rewl ??? (-a+a+-b) (plus_assoc ????));
-apply (lt_rewl ??? (0+-b) (opp_inverse ??));
-apply (lt_rewl ??? ? (zero_neutral ??));
+apply (Lt≫ 0 (opp_inverse ??));
+apply (Lt≪ (-a+a+-b) (plus_assoc ????));
+apply (Lt≪ (0+-b) (opp_inverse ??));
+apply (Lt≪ ? (zero_neutral ??));
apply lt_zero_x_to_lt_opp_x_zero;
assumption;
qed.
lemma applus_orap: ∀G:abelian_group. ∀x,y:G. 0 # x + y → 0 #x ∨ 0#y.
intros; cases (ap_cotransitive ??? y a); [right; assumption]
-left; apply (plus_cancr_ap ??? y); apply (ap_rewl ???y (zero_neutral ??));
+left; apply (plus_cancr_ap ??? y); apply (Ap≪y (zero_neutral ??));
assumption;
qed.
lapply (tog_total ??? e);
lapply (tog_total ??? Hletin);
lapply (ltplus ????? Hletin2 Hletin1);
-apply (exc_rewl ??? (0+0)); [apply eq_sym; apply zero_neutral]
+apply (Ex≪ (0+0)); [apply eq_sym; apply zero_neutral]
apply lt_to_excess; assumption;
qed.