intros 6 (A op SEop x y Exy); intro Axy; apply Exy; apply SEop; assumption;
qed.
-lemma f_plusl: ∀G:abelian_group.∀x,y,z:G. y ≈ z → x+y ≈ x+z.
+lemma feq_plusl: ∀G:abelian_group.∀x,y,z:G. y ≈ z → x+y ≈ x+z.
intros (G x y z Eyz); apply (strong_ext_to_ext ?? (plus_strong_ext ? x));
assumption;
qed.
[1: apply (feq_plusr ???? (opp_inverse ??));
|2: apply (ap_rewl ???? (zero_neutral ? y)); apply (ap_rewr ??? (0 + z));
[1: apply (feq_plusr ???? (opp_inverse ??));
- |2: apply (ap_rewr ???? (zero_neutral ? z)); assumption;]]]]
+ |2: apply (ap_rewr ???? (zero_neutral ??)); assumption;]]]]
qed.
-lemma plus_canc: ∀G:abelian_group.∀x,y,z:G. x+y ≈ x+z → y ≈ z.
-intros 6 (G x y z E Ayz); apply E; apply fap_plusl; assumption;
-qed.
+lemma fap_plusr: ∀G:abelian_group.∀x,y,z:G. y # z → y+x # z+x.
+intros (G x y z Ayz); apply (plus_strong_extr ? (-x));
+apply (ap_rewl ??? (y + (x + -x)));
+[1: apply (eq_symmetric ??? (plus_assoc ????));
+|2: apply (ap_rewr ??? (z + (x + -x)));
+ [1: apply (eq_symmetric ??? (plus_assoc ????));
+ |2: apply (ap_rewl ??? (y + (-x+x)) (feq_plusl ???? (plus_comm ???)));
+ apply (ap_rewl ??? (y + 0) (feq_plusl ???? (opp_inverse ??)));
+ apply (ap_rewl ??? (0 + y) (plus_comm ???));
+ apply (ap_rewl ??? y (zero_neutral ??));
+ apply (ap_rewr ??? (z + (-x+x)) (feq_plusl ???? (plus_comm ???)));
+ apply (ap_rewr ??? (z + 0) (feq_plusl ???? (opp_inverse ??)));
+ apply (ap_rewr ??? (0 + z) (plus_comm ???));
+ apply (ap_rewr ??? z (zero_neutral ??));
+ assumption]]
+qed.
+
+lemma plus_cancl: ∀G:abelian_group.∀y,z,x:G. x+y ≈ x+z → y ≈ z.
+intros 6 (G y z x E Ayz); apply E; apply fap_plusl; assumption;
+qed.
-(*
-
-theorem eq_opp_plus_plus_opp_opp: ∀G:abelian_group.∀x,y:G. -(x+y) = -x + -y.
- intros;
- apply (cancellationlaw ? (x+y));
- rewrite < plus_comm;
- rewrite > opp_inverse;
- rewrite > plus_assoc;
- rewrite > plus_comm in ⊢ (? ? ? (? ? ? (? ? ? %)));
- rewrite < plus_assoc in ⊢ (? ? ? (? ? ? %));
- rewrite > plus_comm;
- rewrite > plus_comm in ⊢ (? ? ? (? ? (? ? % ?) ?));
- rewrite > opp_inverse;
- rewrite > zero_neutral;
- rewrite > opp_inverse;
- reflexivity.
+lemma plus_cancr: ∀G:abelian_group.∀y,z,x:G. y+x ≈ z+x → y ≈ z.
+intros 6 (G y z x E Ayz); apply E; apply fap_plusr; assumption;
qed.
-theorem eq_opp_opp_x_x: ∀G:abelian_group.∀x:G.--x=x.
- intros;
- apply (cancellationlaw ? (-x));
- rewrite > opp_inverse;
- rewrite > plus_comm;
- rewrite > opp_inverse;
- reflexivity.
+theorem eq_opp_plus_plus_opp_opp:
+ ∀G:abelian_group.∀x,y:G. -(x+y) ≈ -x + -y.
+intros (G x y); apply (plus_cancr ??? (x+y));
+apply (eq_transitive ?? 0); [apply (opp_inverse ??)]
+apply (eq_transitive ?? (-x + -y + x + y)); [2: apply (eq_symmetric ??? (plus_assoc ????))]
+apply (eq_transitive ?? (-y + -x + x + y)); [2: repeat apply feq_plusr; apply plus_comm]
+apply (eq_transitive ?? (-y + (-x + x) + y)); [2: apply feq_plusr; apply plus_assoc;]
+apply (eq_transitive ?? (-y + 0 + y));
+ [2: apply feq_plusr; apply feq_plusl; apply eq_symmetric; apply opp_inverse]
+apply (eq_transitive ?? (-y + y));
+ [2: apply feq_plusr; apply eq_symmetric;
+ apply (eq_transitive ?? (0+-y)); [apply plus_comm|apply zero_neutral]]
+apply eq_symmetric; apply opp_inverse.
qed.
-theorem eq_zero_opp_zero: ∀G:abelian_group.0=-0.
+theorem eq_opp_opp_x_x: ∀G:abelian_group.∀x:G.--x ≈ x.
+intros (G x); apply (plus_cancl ??? (-x));
+apply (eq_transitive ?? (--x + -x)); [apply plus_comm]
+apply (eq_transitive (carr G) (plus G (opp G (opp G x)) (opp G x)) (zero G) (plus G (opp G x) x) ? ?);
+ [apply (opp_inverse G (opp G x)).
+ |apply (eq_symmetric (carr G) (plus G (opp G x) x) (zero G) ?).
+ apply (opp_inverse G x).
+ ]
+qed.
+
+theorem eq_zero_opp_zero: ∀G:abelian_group.0 ≈ -0.
[ assumption
| intros;
- apply (cancellationlaw ? 0);
- rewrite < plus_comm in ⊢ (? ? ? %);
- rewrite > opp_inverse;
- rewrite > zero_neutral;
- reflexivity
- ].
+apply (eq_transitive (carr G) (zero G) (plus G (opp G (zero G)) (zero G)) (opp G (zero G)) ? ?);
+ [apply (eq_symmetric (carr G) (plus G (opp G (zero G)) (zero G)) (zero G) ?).
+ apply (opp_inverse G (zero G)).
+ |apply (eq_transitive (carr G) (plus G (opp G (zero G)) (zero G)) (plus G (zero G) (opp G (zero G))) (opp G (zero G)) ? ?);
+ [apply (plus_comm G (opp G (zero G)) (zero G)).
+ |apply (zero_neutral G (opp G (zero G))).
+ ]
+ ]]
qed.
-
-*)
\ No newline at end of file