+proceduralTypes.cmo: proceduralTypes.cmi
+proceduralTypes.cmx: proceduralTypes.cmi
proceduralClassify.cmo: proceduralClassify.cmi
proceduralClassify.cmx: proceduralClassify.cmi
proceduralMode.cmo: proceduralClassify.cmi proceduralMode.cmi
proceduralMode.cmx: proceduralClassify.cmx proceduralMode.cmi
-proceduralConversion.cmo: proceduralConversion.cmi
-proceduralConversion.cmx: proceduralConversion.cmi
-proceduralTypes.cmo: proceduralTypes.cmi
-proceduralTypes.cmx: proceduralTypes.cmi
+proceduralConversion.cmo: proceduralTypes.cmi proceduralClassify.cmi \
+ proceduralConversion.cmi
+proceduralConversion.cmx: proceduralTypes.cmx proceduralClassify.cmx \
+ proceduralConversion.cmi
acic2Procedural.cmo: proceduralTypes.cmi proceduralMode.cmi \
proceduralConversion.cmi proceduralClassify.cmi acic2Procedural.cmi
acic2Procedural.cmx: proceduralTypes.cmx proceduralMode.cmx \
+proceduralTypes.cmo: proceduralTypes.cmi
+proceduralTypes.cmx: proceduralTypes.cmi
proceduralClassify.cmo: proceduralClassify.cmi
proceduralClassify.cmx: proceduralClassify.cmi
proceduralMode.cmo: proceduralClassify.cmi proceduralMode.cmi
proceduralMode.cmx: proceduralClassify.cmx proceduralMode.cmi
-proceduralConversion.cmo: proceduralConversion.cmi
-proceduralConversion.cmx: proceduralConversion.cmi
-proceduralTypes.cmo: proceduralTypes.cmi
-proceduralTypes.cmx: proceduralTypes.cmi
+proceduralConversion.cmo: proceduralTypes.cmi proceduralClassify.cmi \
+ proceduralConversion.cmi
+proceduralConversion.cmx: proceduralTypes.cmx proceduralClassify.cmx \
+ proceduralConversion.cmi
acic2Procedural.cmo: proceduralTypes.cmi proceduralMode.cmi \
proceduralConversion.cmi proceduralClassify.cmi acic2Procedural.cmi
acic2Procedural.cmx: proceduralTypes.cmx proceduralMode.cmx \
(* helpers ******************************************************************)
-let id x = x
+let identity x = x
let comp f g x = f (g x)
| C.AConst (_, uri, []) ->
UM.eq uri HObj.Logic.eq_ind_URI || Obj.is_eq_ind_URI uri
| _ -> false
+
+let is_fwd_rewrite_right hd tl =
+ if is_rewrite_right hd then match List.nth tl 3 with
+ | C.ARel _ -> true
+ | _ -> false
+ else false
+
+let is_fwd_rewrite_left hd tl =
+ if is_rewrite_left hd then match List.nth tl 3 with
+ | C.ARel _ -> true
+ | _ -> false
+ else false
(*
let get_ind_name uri tno xcno =
try
let expanded_premise = "EXPANDED"
-let convert st v =
+let convert st ?name v =
match get_inner_types st v with
+ | None -> []
| Some (st, et) ->
let cst, cet = cic st, cic et in
if PER.alpha_equivalence cst cet then [] else
- [T.Change (st, et, "")]
- | None -> []
+ match name with
+ | None -> [T.Change (st, et, None, "")]
+ | Some id -> [T.Change (st, et, Some (id, id), ""); T.ClearBody (id, "")]
let eta_expand n t =
+ let id = Ut.id_of_annterm t in
let ty = C.AImplicit ("", None) in
let name i = Printf.sprintf "%s%u" expanded_premise i in
- let lambda i t = C.ALambda ("", C.Name (name i), ty, t) in
+ let lambda i t = C.ALambda (id, C.Name (name i), ty, t) in
let arg i n = T.mk_arel (n - i) (name i) in
let rec aux i f a =
if i >= n then f, a else aux (succ i) (comp f (lambda i)) (arg i n :: a)
in
- let absts, args = aux 0 id [] in
+ let absts, args = aux 0 identity [] in
match Cn.lift 1 n t with
| C.AAppl (id, ts) -> absts (C.AAppl (id, ts @ args))
| t -> absts (C.AAppl ("", t :: args))
with Invalid_argument _ -> failwith "A2P.mk_intros"
let rec mk_atomic st dtext what =
- if T.is_atomic what then [], what else
- let name = defined_premise in
- mk_fwd_proof st dtext name what, T.mk_arel 0 name
+ if T.is_atomic what then
+ match what with
+ | C.ARel (_, _, _, name) -> convert st ~name what, what
+ | _ -> [], what
+ else
+ let name = defined_premise in
+ let script = convert st ~name what in
+ script @ mk_fwd_proof st dtext name what, T.mk_arel 0 name
and mk_fwd_rewrite st dtext name tl direction =
let what, where = List.nth tl 5, List.nth tl 3 in
in
match where with
| C.ARel (_, _, _, binder) -> rewrite binder
- | _ ->
+ | _ -> assert false
+
+(*
assert (get_inner_sort st where = `Prop);
let pred, old = List.nth tl 2, List.nth tl 1 in
let pred_name = defined_premise in
let p2 = T.Cut (cut_name, cut_type, cut_text) in
let qs = [rewrite cut_name; mk_proof (next st) where] in
[T.Branch (qs, ""); p2; p1]
-
+*)
and mk_fwd_proof st dtext name = function
| C.AAppl (_, hd :: tl) as v ->
- if is_rewrite_right hd then mk_fwd_rewrite st dtext name tl true else
- if is_rewrite_left hd then mk_fwd_rewrite st dtext name tl false else
+ if is_fwd_rewrite_right hd tl then mk_fwd_rewrite st dtext name tl true else
+ if is_fwd_rewrite_left hd tl then mk_fwd_rewrite st dtext name tl false else
let ty, _ = TC.type_of_aux' [] st.context (cic hd) Un.empty_ugraph in
begin match get_inner_types st v with
| Some (ity, _) when M.bkd st.context ty ->
| _ ->
let (classes, rc) as h = Cl.classify st.context ty in
let text = Printf.sprintf "%u %s" (List.length classes) (Cl.to_string h) in
- [T.LetIn (name, v, dtext ^ text)]
+ [T.LetIn (name, v, dtext ^ text)]
end
| C.AMutCase (id, uri, tyno, outty, arg, cases) as v ->
begin match Cn.mk_ind st.context id uri tyno outty arg cases with
let script = if proceed then
let ty, _ = TC.type_of_aux' [] st.context (cic hd) Un.empty_ugraph in
let (classes, rc) as h = Cl.classify st.context ty in
- let decurry = List.length classes - List.length tl in
+ let premises, _ = Cl.split st.context ty in
+ let decurry = List.length classes - List.length tl in
if decurry < 0 then mk_proof (clear st) (appl_expand decurry t) else
if decurry > 0 then mk_proof (clear st) (eta_expand decurry t) else
let synth = I.S.singleton 0 in
let text = Printf.sprintf "%u %s" (List.length classes) (Cl.to_string h) in
match rc with
- | Some (i, j) when i > 1 && i <= List.length classes ->
+ | Some (i, j) when i > 1 && i <= List.length classes && M.is_eliminator premises ->
let classes, tl, _, what = split2_last classes tl in
let script, what = mk_atomic st dtext what in
let synth = I.S.add 1 synth in
mk_intros st script
| C.AMutCase (id, uri, tyno, outty, arg, cases) ->
begin match Cn.mk_ind st.context id uri tyno outty arg cases with
- | None ->
+ | _ (* None *) ->
let text = Printf.sprintf "%s" "UNEXPANDED: mutcase" in
let script = [T.Note text] in
mk_intros st script
- | Some t -> mk_proof st t
+(* | Some t -> mk_proof st t *)
end
| t ->
let text = Printf.sprintf "%s: %s" "UNEXPANDED" (string_of_head t) in
module UM = UriManager
module T = ProceduralTypes
+module Cl = ProceduralClassify
(* helpers ******************************************************************)
| C.Sort (C.Type _) -> "_rect"
| C.Meta (_,_) -> assert false
| _ -> assert false
- in
- let buri = UM.buri_of_uri uri in
- let uri = UM.uri_of_string (buri ^ "/" ^ name ^ ext ^ ".con") in
- C.Const (uri, [])
+ in
+ let buri = UM.buri_of_uri uri in
+ let uri = UM.uri_of_string (buri ^ "/" ^ name ^ ext ^ ".con") in
+ C.Const (uri, [])
+
+let rec list_sub start length = function
+ | _ :: tl when start > 0 -> list_sub (pred start) length tl
+ | hd :: tl when length > 0 -> hd :: list_sub start (pred length) tl
+ | _ -> []
+
(* proof construction *******************************************************)
let rec add_abst n t =
if n <= 0 then t else
- let t = C.ALambda ("", C.Anonymous, C.AImplicit ("", None), lift 0 1 t) in
+ let t = C.ALambda ("", C.Name "foo", C.AImplicit ("", None), lift 0 1 t) in
add_abst (pred n) t
let mk_ind context id uri tyno outty arg cases =
- let lpsno, (_, _, arity, constructors) = get_ind_type uri tyno in
+try
+ let is_recursive = function
+ | C.MutInd (u, no, _) -> UM.eq u uri && no = tyno
+ | _ -> false
+ in
+ let lpsno, (_, _, _, constructors) = get_ind_type uri tyno in
let inty, _ = TC.type_of_aux' [] context (cic arg) Un.empty_ugraph in
let ps = match inty with
| C.MutInd _ -> []
| C.Appl (C.MutInd _ :: args) -> List.map (fake_annotate context) args
| _ -> assert false
in
- let lps, rps = T.list_split lpsno ps in
+ let lps, rps = T.list_split lpsno ps in
let eliminator = get_default_eliminator context uri tyno inty in
- let arg_ref = T.mk_arel 0 "" in
+ let eliminator = fake_annotate context eliminator in
+ let arg_ref = T.mk_arel 0 "foo" in
let body = C.AMutCase (id, uri, tyno, outty, arg_ref, cases) in
let predicate = add_abst (succ (List.length rps)) body in
- None
+ let map2 case (_, cty) =
+ let map (h, case, k) premise =
+ if h > 0 then pred h, lift k 1 case, k else
+ if is_recursive premise then 0, lift (succ k) 1 case, succ k else
+ 0, case, succ k
+ in
+ let premises, _ = Cl.split context cty in
+ let _, lifted_case, _ =
+ List.fold_left map (lpsno, case, 1) (List.rev (List.tl premises))
+ in
+ lifted_case
+ in
+ let lifted_cases = List.map2 map2 cases constructors in
+ let args = eliminator :: lps @ predicate :: lifted_cases @ rps @ [arg] in
+ Some (C.AAppl (id, args))
+with Invalid_argument _ -> failwith "PCn.mk_ind"
module C = Cic
module Cl = ProceduralClassify
+let is_eliminator = function
+ | _ :: C.MutInd _ :: _ -> true
+ | _ :: C.Appl (C.MutInd _ :: _) :: _ -> true
+ | _ -> false
+
let is_const = function
| C.Sort _
| C.Const _
| _ -> false
let bkd c t =
- let ts, _ = Cl.split c t in
- is_appl true (List.hd ts)
+ let classes, rc = Cl.classify c t in
+ let premises, _ = Cl.split c t in
+ match rc with
+ | Some (i, j) when i > 1 && i <= List.length classes && is_eliminator premises -> true
+ | _ ->
+ let ts, _ = Cl.split c t in
+ is_appl true (List.hd ts)
* http://cs.unibo.it/helm/.
*)
+val is_eliminator: Cic.term list -> bool
+
val bkd: Cic.context -> Cic.term -> bool
| Elim of what * using option * note
| Apply of what * note
| Whd of count * note
- | Change of inferred * what * note
+ | Change of inferred * what * where * note
+ | ClearBody of name * note
| Branch of step list list * note
(* annterm constructors *****************************************************)
let tactic = G.Reduce (floc, `Whd, pattern) in
mk_tactic tactic
-let mk_change t =
- let pattern = None, [], Some hole in
+let mk_change t where =
+ let pattern = match where with
+ | None -> None, [], Some hole
+ | Some (premise, _) -> None, [premise, hole], None
+ in
let tactic = G.Change (floc, pattern, t) in
mk_tactic tactic
+let mk_clearbody id =
+ let tactic = G.ClearBody (floc, id) in
+ mk_tactic tactic
+
let mk_dot = G.Executable (floc, G.Tactical (floc, G.Dot floc, None))
let mk_sc = G.Executable (floc, G.Tactical (floc, G.Semicolon floc, None))
| Elim (t, xu, s) -> mk_note s :: cont sep (mk_elim t xu :: a)
| Apply (t, s) -> mk_note s :: cont sep (mk_apply t :: a)
| Whd (c, s) -> mk_note s :: cont sep (mk_whd c :: a)
- | Change (t, _, s) -> mk_note s :: cont sep (mk_change t :: a)
+ | Change (t, _, w, s) -> mk_note s :: cont sep (mk_change t w :: a)
+ | ClearBody (n, s) -> mk_note s :: cont sep (mk_clearbody n :: a)
| Branch ([], s) -> a
| Branch ([ps], s) -> render_steps sep a ps
| Branch (pss, s) ->
| Elim of what * using option * note
| Apply of what * note
| Whd of count * note
- | Change of inferred * what * note
+ | Change of inferred * what * where * note
+ | ClearBody of name * note
| Branch of step list list * note
val render_steps:
(* howmany = -1 means Intros, howmany > 0 means Intros n *)
let lambda_abstract ?(howmany=(-1)) metasenv context newmeta ty mk_fresh_name =
let module C = Cic in
- let rec collect_context context howmany ty =
+ let rec collect_context context howmany do_whd ty =
match howmany with
| 0 ->
let irl =
context, ty, (C.Meta (newmeta,irl))
| _ ->
match ty with
- C.Cast (te,_) -> collect_context context howmany te
+ C.Cast (te,_) -> collect_context context howmany do_whd te
| C.Prod (n,s,t) ->
let n' = mk_fresh_name metasenv context n ~typ:s in
let (context',ty,bo) =
- collect_context ((Some (n',(C.Decl s)))::context) (howmany - 1) t
+ collect_context ((Some (n',(C.Decl s)))::context) (howmany - 1) do_whd t
in
(context',ty,C.Lambda(n',s,bo))
| C.LetIn (n,s,t) ->
let (context',ty,bo) =
- collect_context ((Some (n,(C.Def (s,None))))::context) (howmany - 1) t
+ collect_context ((Some (n,(C.Def (s,None))))::context) (howmany - 1) do_whd t
in
(context',ty,C.LetIn(n,s,bo))
| _ as t ->
CicMkImplicit.identity_relocation_list_for_metavariable context
in
context, t, (C.Meta (newmeta,irl))
- else
+ else if do_whd then
+ let t = CicReduction.whd ~delta:true context t in
+ collect_context context howmany false t
+ else
raise (Fail (lazy "intro(s): not enough products or let-ins"))
in
- collect_context context howmany ty
+ collect_context context howmany true ty
let eta_expand metasenv context t arg =
let module T = CicTypeChecker in