include "logic/pts.ma".
-ninductive eq (A:Type[2]) (x:A) : A → Prop ≝
+inductive eq (A:Type[2]) (x:A) : A → Prop ≝
refl: eq A x x.
interpretation "leibnitz's equality" 'eq t x y = (eq t x y).
-nlemma eq_rect_r:
- ∀A.∀a,x.∀p:eq ? x a.∀P: ∀x:A. eq ? x a → Type. P a (refl A a) → P x p.
- #A; #a; #x; #p; ncases p; #P; #H; nassumption.
-nqed.
+lemma eq_rect_r:
+ ∀A.∀a,x.∀p:eq ? x a.∀P: ∀x:A. eq ? x a → Type[0]. P a (refl A a) → P x p.
+ #A; #a; #x; #p; cases p; #P; #H; assumption.
+qed.
-nlemma eq_ind_r :
+lemma eq_ind_r :
∀A.∀a.∀P: ∀x:A. x = a → Prop. P a (refl A a) → ∀x.∀p:eq ? x a.P x p.
- #A; #a; #P; #p; #x0; #p0; napply (eq_rect_r ? ? ? p0); nassumption.
-nqed.
+ #A; #a; #P; #p; #x0; #p0; apply (eq_rect_r ? ? ? p0); assumption.
+qed.
-nlemma eq_rect_Type2_r :
- ∀A:Type.∀a.∀P: ∀x:A. eq ? x a → Type[2]. P a (refl A a) → ∀x.∀p:eq ? x a.P x p.
- #A;#a;#P;#H;#x;#p;ngeneralize in match H;ngeneralize in match P;
- ncases p;//;
-nqed.
+lemma eq_rect_Type2_r :
+ ∀A:Type[0].∀a.∀P: ∀x:A. eq ? x a → Type[2]. P a (refl A a) → ∀x.∀p:eq ? x a.P x p.
+ #A;#a;#P;#H;#x;#p;generalize in match H;generalize in match P;
+ cases p;//;
+qed.
(*
nlemma eq_ind_r :
include "logic/connectives.ma".
-ninductive eq (A: Type[1]) (a: A) : A → CProp[0] ≝
+inductive eq (A: Type[1]) (a: A) : A → CProp[0] ≝
refl: eq A a a.
interpretation "leibnitz's equality" 'eq t x y = (eq t x y).
-nlemma eq_ind_CProp0 : ∀A:Type[1].∀a:A.∀P:A → CProp[0].P a → ∀b:A.a = b → P b.
-#A; #a; #P; #p; #b; #E; ncases E; nassumption;
-nqed.
+lemma eq_ind_CProp0 : ∀A:Type[1].∀a:A.∀P:A → CProp[0].P a → ∀b:A.a = b → P b.
+#A; #a; #P; #p; #b; #E; cases E; assumption;
+qed.
-nlemma eq_ind_r_CProp0 : ∀A:Type[1].∀a:A.∀P:A → CProp[0].P a → ∀b:A.b = a → P b.
-#A; #a; #P; #p; #b; #E; ncases E in p; //;
-nqed.
+lemma eq_ind_r_CProp0 : ∀A:Type[1].∀a:A.∀P:A → CProp[0].P a → ∀b:A.b = a → P b.
+#A; #a; #P; #p; #b; #E; cases E in p; //;
+qed.
-nlemma csc :
+lemma csc :
(∀x,y,z.(x∨(y∨z)) = ((x∨y)∨z)) →
(∀x,y,z.(x∧(y∧z)) = ((x∧y)∧z)) →
(∀x,y.(x∨y) = (y∨x)) →
∀a,b.((a ∧ ¬b) ∨ b) = (a ∨ b).
#H1; #H2; #H3; #H4; #H5; #H6; #H7; #H8; #H9; #H10; #H11; #H12;
#H13; #H14; #H15; #H16; #a; #b;
-nletin proof ≝ (
+letin proof ≝ (
let clause_11: ∀x24. eq CProp[0] (And x24 True) x24
≝ λx24. H7 x24 in
let clause_2: ∀x2. eq CProp[0] (Or x2 (Not x2)) True
(λx:CProp[0]. eq CProp[0] x (Or a b)) clause_190
(Or (And a (Not b)) b) (clause_15 (And a (Not b)) b) in
clause_1);
-napply proof;
-nqed.
+apply proof;
+qed.
include "logic/pts.ma".
-ninductive bool: Type[0] ≝ true: bool | false: bool.
+inductive bool: Type[0] ≝ true: bool | false: bool.
-ndefinition orb ≝ λa,b:bool. match a with [ true ⇒ true | _ ⇒ b ].
+definition orb ≝ λa,b:bool. match a with [ true ⇒ true | _ ⇒ b ].
notation "a || b" left associative with precedence 30 for @{'orb $a $b}.
interpretation "orb" 'orb a b = (orb a b).
\ No newline at end of file
include "logic/pts.ma".
-ndefinition hint_declaration_Type0 ≝ λA:Type[0] .λa,b:A.Prop.
-ndefinition hint_declaration_Type1 ≝ λA:Type[1].λa,b:A.Prop.
-ndefinition hint_declaration_Type2 ≝ λa,b:Type[2].Prop.
-ndefinition hint_declaration_CProp0 ≝ λA:CProp[0].λa,b:A.Prop.
-ndefinition hint_declaration_CProp1 ≝ λA:CProp[1].λa,b:A.Prop.
-ndefinition hint_declaration_CProp2 ≝ λa,b:CProp[2].Prop.
+definition hint_declaration_Type0 ≝ λA:Type[0] .λa,b:A.Prop.
+definition hint_declaration_Type1 ≝ λA:Type[1].λa,b:A.Prop.
+definition hint_declaration_Type2 ≝ λa,b:Type[2].Prop.
+definition hint_declaration_CProp0 ≝ λA:CProp[0].λa,b:A.Prop.
+definition hint_declaration_CProp1 ≝ λA:CProp[1].λa,b:A.Prop.
+definition hint_declaration_CProp2 ≝ λa,b:CProp[2].Prop.
interpretation "hint_decl_Type2" 'hint_decl a b = (hint_declaration_Type2 a b).
interpretation "hint_decl_CProp2" 'hint_decl a b = (hint_declaration_CProp2 a b).
interpretation "hint_decl_Type0" 'hint_decl a b = (hint_declaration_Type0 ? a b).
(* Non uniform coercions support *)
-nrecord lock2 (S : Type[2]) (s : S) : Type[3] ≝ {
+record lock2 (S : Type[2]) (s : S) : Type[3] ≝ {
force2 : Type[2];
lift2 : force2
}.
-nrecord lock1 (S : Type[1]) (s : S) : Type[2] ≝ {
+record lock1 (S : Type[1]) (s : S) : Type[2] ≝ {
force1 : Type[1];
lift1 : force1
}.
-ncoercion lift1 : ∀S:Type[1].∀s:S.∀l:lock1 S s. force1 S s l ≝ lift1
+coercion lift1 : ∀S:Type[1].∀s:S.∀l:lock1 S s. force1 S s l ≝ lift1
on s : ? to force1 ???.
-ncoercion lift2 : ∀S:Type[2].∀s:S.∀l:lock2 S s. force2 S s l ≝ lift2
+coercion lift2 : ∀S:Type[2].∀s:S.∀l:lock2 S s. force2 S s l ≝ lift2
on s : ? to force2 ???.
(* Example of a non uniform coercion declaration
(* ---------------------------------------- *) ⊢
setoid ≡ force1 ? MR lock.
-*)
\ No newline at end of file
+*)