set "baseuri" "cic:/matita/tests/simpl/".
include "coq.ma".
-alias id "not" = "cic:/Coq/Init/Logic/not.con".
alias symbol "eq" (instance 0) = "Coq's leibnitz's equality".
+alias id "plus" = "cic:/Coq/Init/Peano/plus.con".
+alias id "S" = "cic:/Coq/Init/Datatypes/nat.ind#xpointer(1/1/2)".
+alias id "O" = "cic:/Coq/Init/Datatypes/nat.ind#xpointer(1/1/1)".
+alias id "not" = "cic:/Coq/Init/Logic/not.con".
+
+
theorem a :
\forall A:Set.
\forall x,y : A.
symmetry.
exact H1.
qed.
+
+theorem t: let f \def \lambda x,y. x y in f (\lambda x.S x) O = S O.
+ intros. simplify. change in \vdash (? ? (? %) ?) with O.
+ reflexivity. qed.
+
+theorem X: \forall x:nat. let myplus \def plus x in myplus (S O) = S x.
+ intros. simplify. change in \vdash (? ? (% ?) ?) with plus x.
+ rewrite > plus_comm. reflexivity. qed.
+
+theorem R: \forall x:nat. let uno \def x + O in S O + uno = 1 + x.
+ intros. simplify.
+ change in \vdash (? ? (? %) ?) with x + O.
+ rewrite > plus_comm. reflexivity. qed.
+