⬆*[1] V2 ≡ W2 → cpg Rt h c G (L.ⓓV1) (#0) W2
| cpg_ell : ∀c,G,L,V1,V2,W2. cpg Rt h c G L V1 V2 →
⬆*[1] V2 ≡ W2 → cpg Rt h (c+𝟘𝟙) G (L.ⓛV1) (#0) W2
-| cpg_lref : ∀c,I,G,L,V,T,U,i. cpg Rt h c G L (#i) T →
- â¬\86*[1] T â\89¡ U â\86\92 cpg Rt h c G (L.â\93\91{I}V) (#⫯i) U
+| cpg_lref : ∀c,I,G,L,T,U,i. cpg Rt h c G L (#i) T →
+ â¬\86*[1] T â\89¡ U â\86\92 cpg Rt h c G (L.â\93\98{I}) (#⫯i) U
| cpg_bind : ∀cV,cT,p,I,G,L,V1,V2,T1,T2.
cpg Rt h cV G L V1 V2 → cpg Rt h cT G (L.ⓑ{I}V1) T1 T2 →
cpg Rt h ((↓cV)∨cT) G L (ⓑ{p,I}V1.T1) (ⓑ{p,I}V2.T2)
L = K.ⓓV1 & J = LRef 0 & c = cV
| ∃∃cV,K,V1,V2. ⦃G, K⦄ ⊢ V1 ⬈[Rt, cV, h] V2 & ⬆*[1] V2 ≡ T2 &
L = K.ⓛV1 & J = LRef 0 & c = cV+𝟘𝟙
- | ∃∃I,K,V,T,i. ⦃G, K⦄ ⊢ #i ⬈[Rt, c, h] T & ⬆*[1] T ≡ T2 &
- L = K.ⓑ{I}V & J = LRef (⫯i).
+ | ∃∃I,K,T,i. ⦃G, K⦄ ⊢ #i ⬈[Rt, c, h] T & ⬆*[1] T ≡ T2 &
+ L = K.ⓘ{I} & J = LRef (⫯i).
#Rt #c #h #G #L #T1 #T2 * -c -G -L -T1 -T2
[ #I #G #L #J #H destruct /3 width=1 by or5_intro0, conj/
| #G #L #s #J #H destruct /3 width=3 by or5_intro1, ex3_intro/
| #c #G #L #V1 #V2 #W2 #HV12 #VW2 #J #H destruct /3 width=8 by or5_intro2, ex5_4_intro/
| #c #G #L #V1 #V2 #W2 #HV12 #VW2 #J #H destruct /3 width=8 by or5_intro3, ex5_4_intro/
-| #c #I #G #L #V #T #U #i #HT #HTU #J #H destruct /3 width=9 by or5_intro4, ex4_5_intro/
+| #c #I #G #L #T #U #i #HT #HTU #J #H destruct /3 width=8 by or5_intro4, ex4_4_intro/
| #cV #cT #p #I #G #L #V1 #V2 #T1 #T2 #_ #_ #J #H destruct
| #cV #cT #G #L #V1 #V2 #T1 #T2 #_ #_ #J #H destruct
| #cU #cT #G #L #U1 #U2 #T1 #T2 #_ #_ #_ #J #H destruct
L = K.ⓓV1 & J = LRef 0 & c = cV
| ∃∃cV,K,V1,V2. ⦃G, K⦄ ⊢ V1 ⬈[Rt, cV, h] V2 & ⬆*[1] V2 ≡ T2 &
L = K.ⓛV1 & J = LRef 0 & c = cV+𝟘𝟙
- | ∃∃I,K,V,T,i. ⦃G, K⦄ ⊢ #i ⬈[Rt, c, h] T & ⬆*[1] T ≡ T2 &
- L = K.ⓑ{I}V & J = LRef (⫯i).
+ | ∃∃I,K,T,i. ⦃G, K⦄ ⊢ #i ⬈[Rt, c, h] T & ⬆*[1] T ≡ T2 &
+ L = K.ⓘ{I} & J = LRef (⫯i).
/2 width=3 by cpg_inv_atom1_aux/ qed-.
lemma cpg_inv_sort1: ∀Rt,c,h,G,L,T2,s. ⦃G, L⦄ ⊢ ⋆s ⬈[Rt, c, h] T2 →
elim (cpg_inv_atom1 … H) -H * /3 width=1 by or_introl, conj/
[ #s0 #H destruct /3 width=1 by or_intror, conj/
|2,3: #cV #K #V1 #V2 #_ #_ #_ #H destruct
-| #I #K #V1 #V2 #i #_ #_ #_ #H destruct
+| #I #K #T #i #_ #_ #_ #H destruct
]
qed-.
elim (cpg_inv_atom1 … H) -H * /3 width=1 by or3_intro0, conj/
[ #s #H destruct
|2,3: #cV #K #V1 #V2 #HV12 #HVT2 #H1 #_ #H2 destruct /3 width=8 by or3_intro1, or3_intro2, ex4_4_intro/
-| #I #K #V1 #V2 #i #_ #_ #_ #H destruct
+| #I #K #T #i #_ #_ #_ #H destruct
]
qed-.
lemma cpg_inv_lref1: ∀Rt,c,h,G,L,T2,i. ⦃G, L⦄ ⊢ #⫯i ⬈[Rt, c, h] T2 →
(T2 = #(⫯i) ∧ c = 𝟘𝟘) ∨
- ∃∃I,K,V,T. ⦃G, K⦄ ⊢ #i ⬈[Rt, c, h] T & ⬆*[1] T ≡ T2 & L = K.ⓑ{I}V.
+ ∃∃I,K,T. ⦃G, K⦄ ⊢ #i ⬈[Rt, c, h] T & ⬆*[1] T ≡ T2 & L = K.ⓘ{I}.
#Rt #c #h #G #L #T2 #i #H
elim (cpg_inv_atom1 … H) -H * /3 width=1 by or_introl, conj/
[ #s #H destruct
|2,3: #cV #K #V1 #V2 #_ #_ #_ #H destruct
-| #I #K #V1 #V2 #j #HV2 #HVT2 #H1 #H2 destruct /3 width=7 by ex3_4_intro, or_intror/
+| #I #K #T #j #HT #HT2 #H1 #H2 destruct /3 width=6 by ex3_3_intro, or_intror/
]
qed-.
elim (cpg_inv_atom1 … H) -H * /2 width=1 by conj/
[ #s #H destruct
|2,3: #cV #K #V1 #V2 #_ #_ #_ #H destruct
-| #I #K #V1 #V2 #i #_ #_ #_ #H destruct
+| #I #K #T #i #_ #_ #_ #H destruct
]
qed-.
| #G #L #s #q #J #W #U1 #H destruct
| #c #G #L #V1 #V2 #W2 #_ #_ #q #J #W #U1 #H destruct
| #c #G #L #V1 #V2 #W2 #_ #_ #q #J #W #U1 #H destruct
-| #c #I #G #L #V #T #U #i #_ #_ #q #J #W #U1 #H destruct
+| #c #I #G #L #T #U #i #_ #_ #q #J #W #U1 #H destruct
| #cV #cT #p #I #G #L #V1 #V2 #T1 #T2 #HV12 #HT12 #q #J #W #U1 #H destruct /3 width=8 by ex4_4_intro, or_introl/
| #cV #cT #G #L #V1 #V2 #T1 #T2 #_ #_ #q #J #W #U1 #H destruct
| #cU #cT #G #L #U1 #U2 #T1 #T2 #_ #_ #_ #q #J #W #U1 #H destruct
| #G #L #s #W #U1 #H destruct
| #c #G #L #V1 #V2 #W2 #_ #_ #W #U1 #H destruct
| #c #G #L #V1 #V2 #W2 #_ #_ #W #U1 #H destruct
-| #c #I #G #L #V #T #U #i #_ #_ #W #U1 #H destruct
+| #c #I #G #L #T #U #i #_ #_ #W #U1 #H destruct
| #cV #cT #p #I #G #L #V1 #V2 #T1 #T2 #_ #_ #W #U1 #H destruct
| #cV #cT #G #L #V1 #V2 #T1 #T2 #HV12 #HT12 #W #U1 #H destruct /3 width=8 by or3_intro0, ex4_4_intro/
| #cV #cT #G #L #V1 #V2 #T1 #T2 #_ #_ #_ #W #U1 #H destruct
| #G #L #s #W #U1 #H destruct
| #c #G #L #V1 #V2 #W2 #_ #_ #W #U1 #H destruct
| #c #G #L #V1 #V2 #W2 #_ #_ #W #U1 #H destruct
-| #c #I #G #L #V #T #U #i #_ #_ #W #U1 #H destruct
+| #c #I #G #L #T #U #i #_ #_ #W #U1 #H destruct
| #cV #cT #p #I #G #L #V1 #V2 #T1 #T2 #_ #_ #W #U1 #H destruct
| #cV #cT #G #L #V1 #V2 #T1 #T2 #_ #_ #W #U1 #H destruct
| #cV #cT #G #L #V1 #V2 #T1 #T2 #HRt #HV12 #HT12 #W #U1 #H destruct /3 width=9 by or3_intro0, ex5_4_intro/
* #z #Y #X1 #X2 #HX12 #HXT2 #H1 #H2 destruct /3 width=5 by or3_intro1, or3_intro2, ex4_2_intro/
qed-.
-lemma cpg_inv_lref1_pair: ∀Rt,c,h,I,G,K,V,T2,i. ⦃G, K.ⓑ{I}V⦄ ⊢ #⫯i ⬈[Rt, c, h] T2 →
+lemma cpg_inv_lref1_bind: ∀Rt,c,h,I,G,K,T2,i. ⦃G, K.ⓘ{I}⦄ ⊢ #⫯i ⬈[Rt, c, h] T2 →
(T2 = #(⫯i) ∧ c = 𝟘𝟘) ∨
∃∃T. ⦃G, K⦄ ⊢ #i ⬈[Rt, c, h] T & ⬆*[1] T ≡ T2.
-#Rt #c #h #I #G #L #V #T2 #i #H elim (cpg_inv_lref1 … H) -H /2 width=1 by or_introl/
-* #Z #Y #X #T #HT #HT2 #H destruct /3 width=3 by ex2_intro, or_intror/
+#Rt #c #h #I #G #L #T2 #i #H elim (cpg_inv_lref1 … H) -H /2 width=1 by or_introl/
+* #Z #Y #T #HT #HT2 #H destruct /3 width=3 by ex2_intro, or_intror/
qed-.
(* Basic forward lemmas *****************************************************)
#Rt #c #h #G #K #V #V2 #i elim i -i
[ #L #T2 #HLK lapply (drops_fwd_isid … HLK ?) // #H destruct /3 width=3 by cpg_delta/
| #i #IH #L0 #T0 #H0 #HV2 #HVT2
- elim (drops_inv_succ … H0) -H0 #I #L #V0 #HLK #H destruct
+ elim (drops_inv_succ … H0) -H0 #I #L #HLK #H destruct
elim (lifts_split_trans … HVT2 (𝐔❴⫯i❵) (𝐔❴1❵) ?) -HVT2 /3 width=3 by cpg_lref/
]
qed.
#Rt #c #h #G #K #V #V2 #i elim i -i
[ #L #T2 #HLK lapply (drops_fwd_isid … HLK ?) // #H destruct /3 width=3 by cpg_ell/
| #i #IH #L0 #T0 #H0 #HV2 #HVT2
- elim (drops_inv_succ … H0) -H0 #I #L #V0 #HLK #H destruct
+ elim (drops_inv_succ … H0) -H0 #I #L #HLK #H destruct
elim (lifts_split_trans … HVT2 (𝐔❴⫯i❵) (𝐔❴1❵) ?) -HVT2 /3 width=3 by cpg_lref/
]
qed.
[ #L #T2 #H elim (cpg_inv_zero1 … H) -H * /3 width=1 by or3_intro0, conj/
/4 width=8 by drops_refl, ex4_4_intro, or3_intro2, or3_intro1/
| #i #IH #L #T2 #H elim (cpg_inv_lref1 … H) -H * /3 width=1 by or3_intro0, conj/
- #I #K #V #V2 #H #HVT2 #H0 destruct elim (IH … H) -IH -H
+ #I #K #V2 #H #HVT2 #H0 destruct elim (IH … H) -IH -H
[ * #H1 #H2 destruct lapply (lifts_inv_lref1_uni … HVT2) -HVT2 #H destruct /3 width=1 by or3_intro0, conj/ ] *
#cV #L #W #W2 #HKL #HW2 #HWV2 #H destruct
lapply (lifts_trans … HWV2 … HVT2 ??) -V2
(* Properties with generic slicing for local environments *******************)
(* Note: it should use drops_split_trans_pair2 *)
-lemma cpg_lifts_sn: ∀Rt. reflexive … Rt → ∀c,h,G. d_liftable2_sn (cpg Rt h c G).
+lemma cpg_lifts_sn: ∀Rt. reflexive … Rt →
+ ∀c,h,G. d_liftable2_sn … lifts (cpg Rt h c G).
#Rt #HRt #c #h #G #K #T generalize in match c; -c
-@(fqup_wf_ind_eq … G K T) -G -K -T #G0 #K0 #T0 #IH #G #K * *
+@(fqup_wf_ind_eq (Ⓣ) … G K T) -G -K -T #G0 #K0 #T0 #IH #G #K * *
[ #s #HG #HK #HT #c #X2 #H2 #b #f #L #HLK #X1 #H1 destruct -IH
lapply (lifts_inv_sort1 … H1) -H1 #H destruct
elim (cpg_inv_sort1 … H2) -H2 * #H1 #H2 destruct
lapply (drops_trans … HLK … HK0 ??) -HLK [3,6: |*: // ] #H
elim (drops_split_trans … H) -H [1,6: |*: /2 width=6 by after_uni_dx/ ] #Y #HL0 #HY
lapply (drops_tls_at … Hf … HY) -HY #HY
- elim (drops_inv_skip2 … HY) -HY #L0 #W #HLK0 #HVW #H destruct
+ elim (drops_inv_skip2 … HY) -HY #Z #L0 #HLK0 #HZ #H destruct
+ elim (liftsb_inv_pair_sn … HZ) -HZ #W #HVW #H destruct
elim (IH … HV2 … HLK0 … HVW) -IH /2 width=2 by fqup_lref/ -K -K0 -V #W2 #HVW2 #HW2
elim (lifts_total W2 (𝐔❴⫯i2❵)) #U2 #HWU2
lapply (lifts_trans … HVW2 … HWU2 ??) -HVW2 [3,6: |*: // ] #HVU2
elim (cpg_inv_bind1 … H2) -H2 *
[ #cV #cT #V2 #T2 #HV12 #HT12 #H1 #H2 destruct
elim (IH … HV12 … HLK … HVW1) -HV12 //
- elim (IH … HT12 … HTU1) -IH -HT12 -HTU1 [ |*: /3 width=3 by drops_skip/ ]
+ elim (IH … HT12 … HTU1) -IH -HT12 -HTU1 [ |*: /3 width=3 by drops_skip, ext2_pair/ ]
/3 width=5 by cpg_bind, lifts_bind, ex2_intro/
| #cT #T2 #HT12 #HXT2 #H1 #H2 #H3 destruct
- elim (IH … HT12 … HTU1) -IH -HT12 -HTU1 [ |*: /3 width=3 by drops_skip/ ] #U2 #HTU2 #HU12
+ elim (IH … HT12 … HTU1) -IH -HT12 -HTU1 [ |*: /3 width=3 by drops_skip, ext2_pair/ ] #U2 #HTU2 #HU12
lapply (lifts_trans … HXT2 … HTU2 ??) -T2 [3: |*: // ] #HXU2
elim (lifts_split_trans … HXU2 f (𝐔❴⫯O❵)) [2: /2 width=1 by after_uni_one_dx/ ]
/3 width=5 by cpg_zeta, ex2_intro/
elim (lifts_inv_bind1 … HTU1) -HTU1 #Z1 #U0 #HYZ1 #HTU1 #H destruct
elim (IH … HV12 … HLK … HVW1) -HV12 -HVW1 //
elim (IH … HY12 … HLK … HYZ1) -HY12 //
- elim (IH … HT12 … HTU1) -IH -HT12 -HTU1 [ |*: /3 width=3 by drops_skip/ ]
+ elim (IH … HT12 … HTU1) -IH -HT12 -HTU1 [ |*: /3 width=3 by drops_skip, ext2_pair/ ]
/4 width=7 by cpg_beta, lifts_bind, lifts_flat, ex2_intro/
| #cV #cY #cT #a #V2 #V20 #Y1 #Y2 #T0 #T2 #HV12 #HV20 #HY12 #HT12 #H1 #H2 #H3 destruct
elim (lifts_inv_bind1 … HTU1) -HTU1 #Z1 #U0 #HYZ1 #HTU1 #H destruct
elim (IH … HV12 … HLK … HVW1) -HV12 -HVW1 // #W2 #HVW2 #HW12
elim (IH … HY12 … HLK … HYZ1) -HY12 //
- elim (IH … HT12 … HTU1) -IH -HT12 -HTU1 [ |*: /3 width=3 by drops_skip/ ]
+ elim (IH … HT12 … HTU1) -IH -HT12 -HTU1 [ |*: /3 width=3 by drops_skip, ext2_pair/ ]
elim (lifts_total W2 (𝐔❴1❵)) #W20 #HW20
lapply (lifts_trans … HVW2 … HW20 ??) -HVW2 [3: |*: // ] #H
lapply (lifts_conf … HV20 … H (↑f) ?) -V2 /2 width=3 by after_uni_one_sn/
]
qed-.
-lemma cpg_lifts_bi: ∀Rt. reflexive … Rt → ∀c,h,G. d_liftable2_bi (cpg Rt h c G).
-/3 width=9 by cpg_lifts_sn, d_liftable2_sn_bi/ qed-.
+lemma cpg_lifts_bi: ∀Rt. reflexive … Rt →
+ ∀c,h,G. d_liftable2_bi … lifts (cpg Rt h c G).
+/3 width=12 by cpg_lifts_sn, d_liftable2_sn_bi, lifts_mono/ qed-.
(* Inversion lemmas with generic slicing for local environments *************)
-lemma cpg_inv_lifts_sn: ∀Rt. reflexive … Rt → ∀c,h,G. d_deliftable2_sn (cpg Rt h c G).
+lemma cpg_inv_lifts_sn: ∀Rt. reflexive … Rt →
+ ∀c,h,G. d_deliftable2_sn … lifts (cpg Rt h c G).
#Rt #HRt #c #h #G #L #U generalize in match c; -c
-@(fqup_wf_ind_eq … G L U) -G -L -U #G0 #L0 #U0 #IH #G #L * *
+@(fqup_wf_ind_eq (Ⓣ) … G L U) -G -L -U #G0 #L0 #U0 #IH #G #L * *
[ #s #HG #HL #HU #c #X2 #H2 #b #f #K #HLK #X1 #H1 destruct -IH
lapply (lifts_inv_sort2 … H1) -H1 #H destruct
elim (cpg_inv_sort1 … H2) -H2 * #H1 #H2 destruct
lapply (drops_split_div … HLK (𝐔❴i1❵) ???) -HLK [4,8: * |*: // ] #Y0 #HK0 #HLY0
lapply (drops_conf … HL0 … HLY0 ??) -HLY0 [3,6: |*: /2 width=6 by after_uni_dx/ ] #HLY0
lapply (drops_tls_at … Hf … HLY0) -HLY0 #HLY0
- elim (drops_inv_skip1 … HLY0) -HLY0 #K0 #V #HLK0 #HVW #H destruct
+ elim (drops_inv_skip1 … HLY0) -HLY0 #Z #K0 #HLK0 #HZ #H destruct
+ elim (liftsb_inv_pair_dx … HZ) -HZ #V #HVW #H destruct
elim (IH … HW2 … HLK0 … HVW) -IH /2 width=2 by fqup_lref/ -L -L0 -W #V2 #HVW2 #HV2
lapply (lifts_trans … HVW2 … HWU2 ??) -W2 [3,6: |*: // ] #HVU2
elim (lifts_split_trans … HVU2 ? f) -HVU2 [1,4: |*: /2 width=4 by after_uni_succ_sn/ ]
elim (cpg_inv_bind1 … H2) -H2 *
[ #cW #cU #W2 #U2 #HW12 #HU12 #H1 #H2 destruct
elim (IH … HW12 … HLK … HVW1) -HW12 //
- elim (IH … HU12 … HTU1) -IH -HU12 -HTU1 [ |*: /3 width=3 by drops_skip/ ]
+ elim (IH … HU12 … HTU1) -IH -HU12 -HTU1 [ |*: /3 width=3 by drops_skip, ext2_pair/ ]
/3 width=5 by cpg_bind, lifts_bind, ex2_intro/
| #cU #U2 #HU12 #HXU2 #H1 #H2 #H3 destruct
- elim (IH … HU12 … HTU1) -IH -HU12 -HTU1 [ |*: /3 width=3 by drops_skip/ ] #T2 #HTU2 #HT12
+ elim (IH … HU12 … HTU1) -IH -HU12 -HTU1 [ |*: /3 width=3 by drops_skip, ext2_pair/ ] #T2 #HTU2 #HT12
elim (lifts_div4_one … HTU2 … HXU2) -U2 /3 width=5 by cpg_zeta, ex2_intro/
]
| * #W1 #U1 #HG #HL #HU #c #X2 #H2 #b #f #K #HLK #X1 #H1 destruct
elim (lifts_inv_bind2 … HTU1) -HTU1 #Y1 #T0 #HYZ1 #HTU1 #H destruct
elim (IH … HW12 … HLK … HVW1) -HW12 -HVW1 //
elim (IH … HZ12 … HLK … HYZ1) -HZ12 //
- elim (IH … HU12 … HTU1) -IH -HU12 -HTU1 [ |*: /3 width=3 by drops_skip/ ]
+ elim (IH … HU12 … HTU1) -IH -HU12 -HTU1 [ |*: /3 width=3 by drops_skip, ext2_pair/ ]
/4 width=7 by cpg_beta, lifts_bind, lifts_flat, ex2_intro/
| #cW #cZ #cU #a #W2 #W20 #Z1 #Z2 #U0 #U2 #HW12 #HW20 #HZ12 #HU12 #H1 #H2 #H3 destruct
elim (lifts_inv_bind2 … HTU1) -HTU1 #Y1 #T0 #HYZ1 #HTU1 #H destruct
elim (IH … HW12 … HLK … HVW1) -HW12 -HVW1 // #V2 #HVW2 #HV12
elim (IH … HZ12 … HLK … HYZ1) -HZ12 //
- elim (IH … HU12 … HTU1) -IH -HU12 -HTU1 [ |*: /3 width=3 by drops_skip/ ]
+ elim (IH … HU12 … HTU1) -IH -HU12 -HTU1 [ |*: /3 width=3 by drops_skip, ext2_pair/ ]
lapply (lifts_trans … HVW2 … HW20 ??) -W2 [3: |*: // ] #H
elim (lifts_split_trans … H ? (↑f)) -H [ |*: /2 width=3 by after_uni_one_sn/ ]
/4 width=9 by cpg_theta, lifts_bind, lifts_flat, ex2_intro/
]
qed-.
-lemma cpg_inv_lifts_bi: ∀Rt. reflexive … Rt → ∀c,h,G. d_deliftable2_bi (cpg Rt h c G).
-/3 width=9 by cpg_inv_lifts_sn, d_deliftable2_sn_bi/ qed-.
+lemma cpg_inv_lifts_bi: ∀Rt. reflexive … Rt →
+ ∀c,h,G. d_deliftable2_bi … lifts (cpg Rt h c G).
+/3 width=12 by cpg_inv_lifts_sn, d_deliftable2_sn_bi, lifts_inj/ qed-.
| #c #G #L1 #V1 #V2 #W2 #_ #HVW2 #IH #X #H
elim (lsubr_inv_abst2 … H) -H * #L2 [2: #V ] #HL21 #H destruct
/4 width=3 by cpg_delta, cpg_ell, cpg_ee/
-| #c #I1 #G #L1 #V1 #T1 #U1 #i #_ #HTU1 #IH #X #H
- elim (lsubr_fwd_pair2 … H) -H #I2 #L2 #V2 #HL21 #H destruct
+| #c #I1 #G #L1 #T1 #U1 #i #_ #HTU1 #IH #X #H
+ elim (lsubr_fwd_bind2 … H) -H #I2 #L2 #HL21 #H destruct
/3 width=3 by cpg_lref/
-|6,12: /4 width=1 by cpg_bind, cpg_beta, lsubr_pair/
+|6,12: /4 width=1 by cpg_bind, cpg_beta, lsubr_bind/
|7,8,10,11: /3 width=1 by cpg_appl, cpg_cast, cpg_eps, cpg_ee/
-|9,13: /4 width=3 by cpg_zeta, cpg_theta, lsubr_pair/
+|9,13: /4 width=3 by cpg_zeta, cpg_theta, lsubr_bind/
]
qed-.
definition cdeq: ∀h. sd h → relation3 lenv term term ≝
λh,o,L. tdeq h o.
+definition tdeq_ext: ∀h. sd h → relation bind ≝
+ λh,o. ext2 (tdeq h o).
+
definition cdeq_ext: ∀h. sd h → relation3 lenv bind bind ≝
λh,o. cext2 (cdeq h o).
interpretation
- "degree-based equivalence (binders)"
- 'LazyEq h o I1 I2 = (ext2 (tdeq h o) I1 I2).
+ "degree-based equivalence (binder)"
+ 'LazyEq h o I1 I2 = (tdeq_ext h o I1 I2).
]
class "cyan"
[ { "rt-transition" * } {
+(*
[ { "uncounted rst-transition" * } {
[ "fpbq ( ⦃?,?,?⦄ ≽[?] ⦃?,?,?⦄ )" "fpbq_aaa" * ]
[ "fpb ( ⦃?,?,?⦄ ≻[?,?] ⦃?,?,?⦄ )" "fpb_lfdeq" * ]
[ "cpx ( ⦃?,?⦄ ⊢ ? ⬈[?] ? )" "cpx_simple" + "cpx_drops" + "cpx_fqus" + "cpx_lsubr" + "cpx_lfxs" * ]
}
]
+*)
[ { "counted context-sensitive rt-transition" * } {
[ "cpg ( ⦃?,?⦄ ⊢ ? ⬈[?,?] ? )" "cpg_simple" + "cpg_drops" + "cpg_lsubr" * ]
}
]
}
]
-*)
class "water"
[ { "iterated static typing" * } {
[ { "iterated extension on referred entries" * } {
[ "theq ( ? ⩳[?,?] ? )" "theq_simple" + "theq_tdeq" + "theq_theq" + "theq_simple_vector" * ]
}
]
- [ { "degree-based equivalence for terms" * } {
- [ "tdeq ( ? ≡[?,?] ? ) " "tdeq_ext" + "tdeq_tdeq" * ]
+ [ { "degree-based equivalence" * } {
+ [ "tdeq_ext ( ? ≡[?,?] ? )" * ]
+ [ "tdeq ( ? ≡[?,?] ? )" "tdeq_tdeq" * ]
}
]
[ { "closures" * } {