record concrete_space : Type ≝
{ bp:> BP;
- downarrow: form bp → oa_P (form bp);
+ downarrow: unary_morphism (oa_P (form bp)) (oa_P (form bp));
downarrow_is_sat: is_saturation ? downarrow;
- converges: ∀q1,q2:form bp.
+ converges: ∀q1,q2.
or_f_minus ?? (⊩) q1 ∧ or_f_minus ?? (⊩) q2 =
or_f_minus ?? (⊩) ((downarrow q1) ∧ (downarrow q2));
all_covered: (*⨍^-_bp*) or_f_minus ?? (⊩) (oa_one (form bp)) = oa_one (concr bp);
include "o-algebra.ma".
-definition hint1: OA → Type ≝ λc:OA.carr (oa_P c).
-coercion hint1.
-
-definition hint2: ∀C.hint1 C → carr1 ((λx.x) (setoid1_of_setoid (oa_P C))).
-intros; assumption;
-qed.
-coercion hint2.
-
alias symbol "eq" = "setoid1 eq".
definition is_saturation ≝
- λC:OA.λA:C → C.
+ λC:OA.λA:unary_morphism (oa_P C) (oa_P C).
∀U,V. (U ≤ A V) = (A U ≤ A V).
definition is_reduction ≝
- λC:OA.λJ:C → C.
+ λC:OA.λJ:unary_morphism (oa_P C) (oa_P C).
∀U,V. (J U ≤ V) = (J U ≤ J V).
theorem saturation_expansive: ∀C,A. is_saturation C A → ∀U. U ≤ A U.
theorem saturation_monotone:
∀C,A. is_saturation C A →
- ∀U,V:C. U ≤ V → A U ≤ A V.
+ ∀U,V. U ≤ V → A U ≤ A V.
intros; apply (if ?? (H ??)); apply (oa_leq_trans C);
[apply V|3: apply saturation_expansive ]
assumption.