|normalize /2/
|normalize /2/
|normalize #x #w cases (true_or_false (a==x)) #H >H normalize
- [>(proj1 … (eqb_true …) H) %
- [* // #bot @False_ind //| #H1 destruct /2/]
- |% [#bot @False_ind //
- | #H1 destruct @(absurd ((a==a)=true))
- [>(proj2 … (eqb_true …) (refl …)) // | /2/]
- ]
+ [>(\P H) % [* // #bot @False_ind //| #H1 destruct /2/]
+ |% [@False_ind |#H1 cases (\Pf H) #H2 @H2 destruct //]
]
|#i1 #i2 #HI1 #HI2 #w >(sem_cat S i1 i2) >move_cat
@iff_trans[|@sem_odot] >same_kernel >sem_cat_w
- @iff_trans[||@(iff_or_l … (HI2 w))] @iff_or_r %
- [* #w1 * #w2 * * #eqw #w1in #w2in @(ex_intro … (a::w1))
- @(ex_intro … w2) % // % normalize // cases (HI1 w1) /2/
- |* #w1 * #w2 * cases w1
- [* #_ #H @False_ind /2/
- |#x #w3 * #eqaw normalize in eqaw; destruct #w3in #w2in
- @(ex_intro … w3) @(ex_intro … w2) % // % // cases (HI1 w3) /2/
- ]
- ]
+ @iff_trans[||@(iff_or_l … (HI2 w))] @iff_or_r
+ @iff_trans[||@iff_sym @deriv_middot //]
+ @cat_ext_l @HI1
|#i1 #i2 #HI1 #HI2 #w >(sem_plus S i1 i2) >move_plus >sem_plus_w
@iff_trans[|@sem_oplus]
@iff_trans[|@iff_or_l [|@HI2]| @iff_or_r //]
|#i1 #HI1 #w >move_star
- @iff_trans[|@sem_ostar] >same_kernel >sem_star_w %
- [* #w1 * #w2 * * #eqw #w1in #w2in
- @(ex_intro … (a::w1)) @(ex_intro … w2) % // % normalize //
- cases (HI1 w1 ) /2/
- |* #w1 * #w2 * cases w1
- [* #_ #H @False_ind /2/
- |#x #w3 * #eqaw normalize in eqaw; destruct #w3in #w2in
- @(ex_intro … w3) @(ex_intro … w2) % // % // cases (HI1 w3) /2/
- ]
- ]
+ @iff_trans[|@sem_ostar] >same_kernel >sem_star_w
+ @iff_trans[||@iff_sym @deriv_middot //]
+ @cat_ext_l @HI1
]
qed.
equiv S e1 e2.
*)
-definition beqb ≝ λb1,b2.
- match b1 with
- [ true ⇒ b2
- | false ⇒ notb b2
- ].
-
-lemma beqb_ok: ∀b1,b2. iff (beqb b1 b2 = true) (b1 = b2).
-#b1 #b2 cases b1 cases b2 normalize /2/
-qed.
-
-definition Bin ≝ mk_DeqSet bool beqb beqb_ok.
-
let rec beqitem S (i1,i2: pitem S) on i1 ≝
match i1 with
[ pz ⇒ match i2 with [ pz ⇒ true | _ ⇒ false]
| pk i11 ⇒ match i2 with [ pk i21 ⇒ beqitem S i11 i21 | _ ⇒ false]
].
-axiom beqitem_ok: ∀S,i1,i2. iff (beqitem S i1 i2 = true) (i1 = i2).
+lemma beqitem_true: ∀S,i1,i2. iff (beqitem S i1 i2 = true) (i1 = i2).
+#S #i1 elim i1
+ [#i2 cases i2 [||#a|#a|#i21 #i22| #i21 #i22|#i3] % // normalize #H destruct
+ |#i2 cases i2 [||#a|#a|#i21 #i22| #i21 #i22|#i3] % // normalize #H destruct
+ |#x #i2 cases i2 [||#a|#a|#i21 #i22| #i21 #i22|#i3] % normalize #H destruct
+ [>(\P H) // | @(\b (refl …))]
+ |#x #i2 cases i2 [||#a|#a|#i21 #i22| #i21 #i22|#i3] % normalize #H destruct
+ [>(\P H) // | @(\b (refl …))]
+ |#i11 #i12 #Hind1 #Hind2 #i2 cases i2 [||#a|#a|#i21 #i22| #i21 #i22|#i3] %
+ normalize #H destruct
+ [cases (true_or_false (beqitem S i11 i21)) #H1
+ [>(proj1 … (Hind1 i21) H1) >(proj1 … (Hind2 i22)) // >H1 in H; #H @H
+ |>H1 in H; normalize #abs @False_ind /2/
+ ]
+ |>(proj2 … (Hind1 i21) (refl …)) >(proj2 … (Hind2 i22) (refl …)) //
+ ]
+ |#i11 #i12 #Hind1 #Hind2 #i2 cases i2 [||#a|#a|#i21 #i22| #i21 #i22|#i3] %
+ normalize #H destruct
+ [cases (true_or_false (beqitem S i11 i21)) #H1
+ [>(proj1 … (Hind1 i21) H1) >(proj1 … (Hind2 i22)) // >H1 in H; #H @H
+ |>H1 in H; normalize #abs @False_ind /2/
+ ]
+ |>(proj2 … (Hind1 i21) (refl …)) >(proj2 … (Hind2 i22) (refl …)) //
+ ]
+ |#i3 #Hind #i2 cases i2 [||#a|#a|#i21 #i22| #i21 #i22|#i4] %
+ normalize #H destruct
+ [>(proj1 … (Hind i4) H) // |>(proj2 … (Hind i4) (refl …)) //]
+ ]
+qed.
definition DeqItem ≝ λS.
- mk_DeqSet (pitem S) (beqitem S) (beqitem_ok S).
-
-definition beqpre ≝ λS:DeqSet.λe1,e2:pre S.
- beqitem S (\fst e1) (\fst e2) ∧ beqb (\snd e1) (\snd e2).
-
-definition beqpairs ≝ λS:DeqSet.λp1,p2:(pre S)×(pre S).
- beqpre S (\fst p1) (\fst p2) ∧ beqpre S (\snd p1) (\snd p2).
+ mk_DeqSet (pitem S) (beqitem S) (beqitem_true S).
-axiom beqpairs_ok: ∀S,p1,p2. iff (beqpairs S p1 p2 = true) (p1 = p2).
-
-definition space ≝ λS.mk_DeqSet ((pre S)×(pre S)) (beqpairs S) (beqpairs_ok S).
-
-(* (sons S l p) computes all sons of p relative to characters in l *)
+unification hint 0 ≔ S;
+ X ≟ mk_DeqSet (pitem S) (beqitem S) (beqitem_true S)
+(* ---------------------------------------- *) ⊢
+ pitem S ≡ carr X.
+
+unification hint 0 ≔ S,i1,i2;
+ X ≟ mk_DeqSet (pitem S) (beqitem S) (beqitem_true S)
+(* ---------------------------------------- *) ⊢
+ beqitem S i1 i2 ≡ eqb X i1 i2.
-definition sons ≝ λS:DeqSet.λl:list S.λp:space S.
+definition sons ≝ λS:DeqSet.λl:list S.λp:(pre S)×(pre S).
map ?? (λa.〈move S a (\fst (\fst p)),move S a (\fst (\snd p))〉) l.
-lemma memb_sons: ∀S,l,p,q. memb (space S) p (sons S l q) = true →
+lemma memb_sons: ∀S,l.∀p,q:(pre S)×(pre S). memb ? p (sons ? l q) = true →
∃a.(move ? a (\fst (\fst q)) = \fst p ∧
move ? a (\fst (\snd q)) = \snd p).
#S #l elim l [#p #q normalize in ⊢ (%→?); #abs @False_ind /2/]
]
qed.
-let rec bisim S l n (frontier,visited: list (space S)) on n ≝
+let rec bisim S l n (frontier,visited: list ?) on n ≝
match n with
[ O ⇒ 〈false,visited〉 (* assert false *)
| S m ⇒
]
].
-lemma unfold_bisim: ∀S,l,n.∀frontier,visited: list (space S).
+lemma unfold_bisim: ∀S,l,n.∀frontier,visited: list ?.
bisim S l n frontier visited =
match n with
[ O ⇒ 〈false,visited〉 (* assert false *)
].
#S #l #n cases n // qed.
-lemma bisim_never: ∀S,l.∀frontier,visited: list (space S).
+lemma bisim_never: ∀S,l.∀frontier,visited: list ?.
bisim S l O frontier visited = 〈false,visited〉.
#frontier #visited >unfold_bisim //
qed.
-lemma bisim_end: ∀Sig,l,m.∀visited: list (space Sig).
+lemma bisim_end: ∀Sig,l,m.∀visited: list ?.
bisim Sig l (S m) [] visited = 〈true,visited〉.
#n #visisted >unfold_bisim //
qed.
-lemma bisim_step_true: ∀Sig,l,m.∀p.∀frontier,visited: list (space Sig).
+lemma bisim_step_true: ∀Sig,l,m.∀p.∀frontier,visited: list ?.
beqb (\snd (\fst p)) (\snd (\snd p)) = true →
bisim Sig l (S m) (p::frontier) visited =
- bisim Sig l m (unique_append ? (filter ? (λx.notb(memb (space Sig) x (p::visited)))
+ bisim Sig l m (unique_append ? (filter ? (λx.notb(memb ? x (p::visited)))
(sons Sig l p)) frontier) (p::visited).
#Sig #l #m #p #frontier #visited #test >unfold_bisim normalize nodelta >test //
qed.
-lemma bisim_step_false: ∀Sig,l,m.∀p.∀frontier,visited: list (space Sig).
+lemma bisim_step_false: ∀Sig,l,m.∀p.∀frontier,visited: list ?.
beqb (\snd (\fst p)) (\snd (\snd p)) = false →
bisim Sig l (S m) (p::frontier) visited = 〈false,visited〉.
#Sig #l #m #p #frontier #visited #test >unfold_bisim normalize nodelta >test //
qed.
-definition visited_inv ≝ λS.λe1,e2:pre S.λvisited: list (space S).
+definition visited_inv ≝ λS.λe1,e2:pre S.λvisited: list ?.
uniqueb ? visited = true ∧
∀p. memb ? p visited = true →
(∃w.(moves S w e1 = \fst p) ∧ (moves S w e2 = \snd p)) ∧
(beqb (\snd (\fst p)) (\snd (\snd p)) = true).
-definition frontier_inv ≝ λS.λfrontier,visited: list (space S).
+definition frontier_inv ≝ λS.λfrontier,visited.
uniqueb ? frontier = true ∧
-∀p. memb ? p frontier = true →
+∀p:(pre S)×(pre S). memb ? p frontier = true →
memb ? p visited = false ∧
∃p1.((memb ? p1 visited = true) ∧
(∃a. move ? a (\fst (\fst p1)) = \fst p ∧
| c i1 i2 ⇒ compose ??? (pc S) (pitem_enum S i1) (pitem_enum S i2)
| k i ⇒ map ?? (pk S) (pitem_enum S i)
].
-
-(* axiom pitem_enum_complete: ∀S:DeqSet.∀i: pitem S.
- memb ((pitem S)×(pitem S)) i (pitem_enum ? (forget ? i)) = true. *)
-(*
-#i elim i
- [//
- |//
- |* //
- |* //
- |#i1 #i2 #Hind1 #Hind2 @memb_compose //
- |#i1 #i2 #Hind1 #Hind2 @memb_compose //
- |
-*)
+
+lemma pitem_enum_complete : ∀S.∀i:pitem S.
+ memb (DeqItem S) i (pitem_enum S (|i|)) = true.
+#S #i elim i
+ [1,2://
+ |3,4:#c normalize >(\b (refl … c)) //
+ |5,6:#i1 #i2 #Hind1 #Hind2 @(memb_compose (DeqItem S) (DeqItem S)) //
+ |#i #Hind @(memb_map (DeqItem S)) //
+ ]
+qed.
definition pre_enum ≝ λS.λi:re S.
compose ??? (λi,b.〈i,b〉) (pitem_enum S i) [true;false].
+
+lemma pre_enum_complete : ∀S.∀e:pre S.
+ memb ? e (pre_enum S (|\fst e|)) = true.
+#S * #i #b @(memb_compose (DeqItem S) DeqBool ? (λi,b.〈i,b〉))
+// cases b normalize //
+qed.
definition space_enum ≝ λS.λi1,i2:re S.
- compose ??? (λe1,e2.〈e1,e2〉) (pre_enum S i1) (pre_enum S i1).
+ compose ??? (λe1,e2.〈e1,e2〉) (pre_enum S i1) (pre_enum S i2).
-axiom space_enum_complete : ∀S.∀e1,e2: pre S.
- memb (space S) 〈e1,e2〉 (space_enum S (|\fst e1|) (|\fst e2|)) = true.
+lemma space_enum_complete : ∀S.∀e1,e2: pre S.
+ memb ? 〈e1,e2〉 (space_enum S (|\fst e1|) (|\fst e2|)) = true.
+#S #e1 #e2 @(memb_compose … (λi,b.〈i,b〉))
+// qed.
+
+definition visited_inv_1 ≝ λS.λe1,e2:pre S.λvisited: list ?.
+uniqueb ? visited = true ∧
+ ∀p. memb ? p visited = true →
+ ∃w.(moves S w e1 = \fst p) ∧ (moves S w e2 = \snd p).
lemma bisim_ok1: ∀S.∀e1,e2:pre S.\sem{e1}=1\sem{e2} →
- ∀l,n.∀frontier,visited:list (space S).
+ ∀l,n.∀frontier,visited:list (*(space S) *) ((pre S)×(pre S)).
|space_enum S (|\fst e1|) (|\fst e2|)| < n + |visited|→
- visited_inv S e1 e2 visited → frontier_inv S frontier visited →
+ visited_inv_1 S e1 e2 visited → frontier_inv S frontier visited →
\fst (bisim S l n frontier visited) = true.
#Sig #e1 #e2 #same #l #n elim n
[#frontier #visited #abs * #unique #H @False_ind @(absurd … abs)
@le_to_not_lt @sublist_length // * #e11 #e21 #membp
cut ((|\fst e11| = |\fst e1|) ∧ (|\fst e21| = |\fst e2|))
[|* #H1 #H2 <H1 <H2 @space_enum_complete]
- cases (H … membp) * #w * #we1 #we2 #_
- <we1 <we2 % //
+ cases (H … membp) #w * #we1 #we2 <we1 <we2 % >same_kernel_moves //
|#m #HI * [#visited #vinv #finv >bisim_end //]
#p #front_tl #visited #Hn * #u_visited #vinv * #u_frontier #finv
cases (finv p (memb_hd …)) #Hp * #p2 * #visited_p2
- * #a * #movea1 #movea2
+ * #a * #movea1 #movea2
cut (∃w.(moves Sig w e1 = \fst p) ∧ (moves Sig w e2 = \snd p))
- [cases (vinv … visited_p2) -vinv * #w1 * #mw1 #mw2 #_
- @(ex_intro … (w1@[a])) /2/]
+ [cases (vinv … visited_p2) -vinv #w1 * #mw1 #mw2
+ @(ex_intro … (w1@[a])) % //]
-movea2 -movea1 -a -visited_p2 -p2 #reachp
cut (beqb (\snd (\fst p)) (\snd (\snd p)) = true)
[cases reachp #w * #move_e1 #move_e2 <move_e1 <move_e2
- @(proj2 … (beqb_ok … )) @(proj1 … (equiv_sem … )) @same
- |#ptest >(bisim_step_true … ptest) @HI -HI
- [<plus_n_Sm //
- |% [whd in ⊢ (??%?); >Hp whd in ⊢ (??%?); //]
- #p1 #H (cases (orb_true_l … H))
- [#eqp <(proj1 … (eqb_true (space Sig) ? p1) eqp) % //
+ @(\b ?) @(proj1 … (equiv_sem … )) @same] #ptest
+ >(bisim_step_true … ptest) @HI -HI
+ [<plus_n_Sm //
+ |% [whd in ⊢ (??%?); >Hp whd in ⊢ (??%?); //]
+ #p1 #H (cases (orb_true_l … H))
+ [#eqp <(\P eqp) //
|#visited_p1 @(vinv … visited_p1)
]
- |whd % [@unique_append_unique @(andb_true_r … u_frontier)]
- @unique_append_elim #q #H
- [%
- [@notb_eq_true_l @(filter_true … H)
- |@(ex_intro … p) % //
- @(memb_sons … (memb_filter_memb … H))
+ |whd % [@unique_append_unique @(andb_true_r … u_frontier)]
+ @unique_append_elim #q #H
+ [%
+ [@notb_eq_true_l @(filter_true … H)
+ |@(ex_intro … p) % [@memb_hd|@(memb_sons … (memb_filter_memb … H))]
+ ]
+ |cases (finv q ?) [|@memb_cons //]
+ #nvq * #p1 * #Hp1 #reach %
+ [cut ((p==q) = false) [|#Hpq whd in ⊢ (??%?); >Hpq @nvq]
+ cases (andb_true … u_frontier) #notp #_
+ @(not_memb_to_not_eq … H) @notb_eq_true_l @notp
+ |cases (proj2 … (finv q ?))
+ [#p1 * #Hp1 #reach @(ex_intro … p1) % // @memb_cons //
+ |@memb_cons //
]
- |cases (finv q ?) [|@memb_cons //]
- #nvq * #p1 * #Hp1 #reach %
- [cut ((p==q) = false) [|#Hpq whd in ⊢ (??%?); >Hpq @nvq]
- cases (andb_true … u_frontier) #notp #_
- @(not_memb_to_not_eq … H) @notb_eq_true_l @notp
- |cases (proj2 … (finv q ?))
- [#p1 * #Hp1 #reach @(ex_intro … p1) % // @memb_cons //
- |@memb_cons //
- ]
- ]
- ]
- ]
+ ]
+ ]
]
]
qed.
-definition all_true ≝ λS.λl.∀p. memb (space S) p l = true →
+definition all_true ≝ λS.λl.∀p:(pre S) × (pre S). memb ? p l = true →
(beqb (\snd (\fst p)) (\snd (\snd p)) = true).
-definition sub_sons ≝ λS,l,l1,l2.∀x,a.
-memb (space S) x l1 = true → memb S a l = true →
- memb (space S) 〈move ? a (\fst (\fst x)), move ? a (\fst (\snd x))〉 l2 = true.
+definition sub_sons ≝ λS,l,l1,l2.∀x:(pre S) × (pre S).∀a:S.
+memb ? x l1 = true → memb S a l = true →
+ memb ? 〈move ? a (\fst (\fst x)), move ? a (\fst (\snd x))〉 l2 = true.
lemma reachable_bisim:
- ∀S,l,n.∀frontier,visited,visited_res:list (space S).
+ ∀S,l,n.∀frontier,visited,visited_res:list ?.
all_true S visited →
sub_sons S l visited (frontier@visited) →
bisim S l n frontier visited = 〈true,visited_res〉 →
|#m #Hind *
[(* case empty frontier *)
-Hind #vis #vis_res #allv #H normalize in ⊢ (%→?);
- #H1 destruct % // % // #p /2/
+ #H1 destruct % // % // #p /2 by /
|#hd cases (true_or_false (beqb (\snd (\fst hd)) (\snd (\snd hd))))
[|(* case head of the frontier is non ok (absurd) *)
#H #tl #vis #vis_res #allv >(bisim_step_false … H) #_ #H1 destruct]
#H #tl #visited #visited_res #allv >(bisim_step_true … H)
(* new_visited = hd::visited are all ok *)
cut (all_true S (hd::visited))
- [#p #H cases (orb_true_l … H)
- [#eqp <(proj1 … (eqb_true …) eqp) // |@allv]]
+ [#p #H1 cases (orb_true_l … H1) [#eqp <(\P eqp) @H |@allv]]
(* we now exploit the induction hypothesis *)
#allh #subH #bisim cases (Hind … allh … bisim) -Hind
[* #H1 #H2 #H3 % // % // #p #H4 @H2 @memb_cons //]
(* xa is the son of x w.r.t. a; we must distinguish the case xa
was already visited form the case xa is new *)
letin xa ≝ 〈move S a (\fst (\fst x)), move S a (\fst (\snd x))〉
- cases (true_or_false … (memb (space S) xa (x::visited)))
+ cases (true_or_false … (memb ? xa (x::visited)))
[(* xa visited - trivial *) #membxa @memb_append_l2 //
|(* xa new *) #membxa @memb_append_l1 @sublist_unique_append_l1 @memb_filter_l
[>membxa //
lemma bisim_char: ∀S.∀e1,e2:pre S.
(∀w.(beqb (\snd (moves S w e1)) (\snd (moves ? w e2))) = true) →
\sem{e1}=1\sem{e2}.
-#S #e1 #e2 #H @(proj2 … (equiv_sem …)) #w @(proj1 …(beqb_ok …)) @H
+#S #e1 #e2 #H @(proj2 … (equiv_sem …)) #w @(\P ?) @H
qed.
lemma bisim_ok2: ∀S.∀e1,e2:pre S.
]
] #init
cases (reachable_bisim … allH init … H) * #H1 #H2 #H3
-cut (∀w.sublist ? w (occ S e1 e2)→∀p.memb (space S) p visited_res = true →
- memb (space S) 〈moves ? w (\fst p), moves ? w (\snd p)〉 visited_res = true)
- [#w elim w [//]
+cut (∀w.sublist ? w (occ S e1 e2)→∀p.memb ? p visited_res = true →
+ memb ? 〈moves ? w (\fst p), moves ? w (\snd p)〉 visited_res = true)
+ [#w elim w [#_ #p #H4 >moves_empty >moves_empty <eq_pair_fst_snd //]
#a #w1 #Hind #Hsub * #e11 #e21 #visp >moves_cons >moves_cons
@(Hind ? 〈?,?〉) [#x #H4 @Hsub @memb_cons //]
- @(H1 〈?,?〉) // @Hsub @memb_hd] #all_reach
+ @(H1 〈?,?〉) [@visp| @Hsub @memb_hd]] #all_reach
@bisim_char @occ_enough
#w #Hsub @(H3 〈?,?〉) @(all_reach w Hsub 〈?,?〉) @H2 //
qed.
+(*
definition tt ≝ ps Bin true.
definition ff ≝ ps Bin false.
definition eps ≝ pe Bin.
definition exp3 ≝ move Bin true (\fst (•exp1)).
definition exp4 ≝ move Bin true (\fst (•exp2)).
definition exp5 ≝ move Bin false (\fst (•exp1)).
-definition exp6 ≝ move Bin false (\fst (•exp2)).
+definition exp6 ≝ move Bin false (\fst (•exp2)). *)