axiom B : nat -> Type.
axiom A1: nat -> Type.
axiom B1: nat -> Type.
-axiom b : ∀n.B n.
axiom c : ∀n,m. A1 n -> A m.
axiom d : ∀n,m. B n -> B1 m.
axiom f : ∀n,m. A n -> B m.
+axiom g : ∀n.B n.
coercion cic:/matita/test/c.con.
coercion cic:/matita/test/d.con.
definition foo := λn,n1,m,m1.(λx.d m m1 (f n m (c n1 n x)) : A1 n1 -> B1 m1).
definition foo1_1 := λn,n1,m,m1.(f n m : A1 n1 -> B1 m1).
-definition g := λn,m.λx:A n.b m.
-definition foo2 := λn,n1,m,m1.(g n m : A1 n1 -> B1 m1).
-definition foo3 := λn1,n,m,m1.(g n m : A1 n1 -> B1 m1).
-definition foo4 := λn1,n,m1,m.(g n m : A1 n1 -> B1 m1).
-
+definition h := λn,m.λx:A n.g m.
+definition foo2 := λn,n1,m,m1.(h n m : A1 n1 -> B1 m1).
+definition foo3 := λn1,n,m,m1.(h n m : A1 n1 -> B1 m1).
+definition foo4 := λn1,n,m1,m.(h n m : A1 n1 -> B1 m1).
\ No newline at end of file