include "ground_2/notation/constructors/circledE_1.ma".
include "ground_2/notation/constructors/oplusright_3.ma".
-include "ground_2/lib/arith.ma".
+include "ground_2/lib/relations.ma".
(* LISTS ********************************************************************)
interpretation "cons (list)" 'OPlusRight A hd tl = (cons A hd tl).
-rec definition length A (l:list A) on l ≝ match l with
-[ nil ⇒ 0
-| cons _ l ⇒ ↑(length A l)
-].
-
-interpretation "length (list)"
- 'card l = (length ? l).
-
rec definition all A (R:predicate A) (l:list A) on l ≝
match l with
[ nil ⇒ ⊤
- | cons hd tl ⇒ R hd ∧ all A R tl
+ | cons hd tl ⇒ ∧∧ R hd & all A R tl
].
-
-(* Basic properties on length ***********************************************)
-
-lemma length_nil (A:Type[0]): |nil A| = 0.
-// qed.
-
-lemma length_cons (A:Type[0]) (l:list A) (a:A): |a⨮l| = ↑|l|.
-// qed.
-
-(* Basic inversion lemmas on length *****************************************)
-
-lemma length_inv_zero_dx (A:Type[0]) (l:list A): |l| = 0 → l = Ⓔ.
-#A * // #a #l >length_cons #H destruct
-qed-.
-
-lemma length_inv_zero_sn (A:Type[0]) (l:list A): 0 = |l| → l = Ⓔ.
-/2 width=1 by length_inv_zero_dx/ qed-.
-
-lemma length_inv_succ_dx (A:Type[0]) (l:list A) (x): |l| = ↑x →
- ∃∃tl,a. x = |tl| & l = a ⨮ tl.
-#A * /2 width=4 by ex2_2_intro/
->length_nil #x #H destruct
-qed-.
-
-lemma length_inv_succ_sn (A:Type[0]) (l:list A) (x): ↑x = |l| →
- ∃∃tl,a. x = |tl| & l = a ⨮ tl.
-/2 width=1 by length_inv_succ_dx/ qed.
--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+include "ground_2/lib/arith.ma".
+include "ground_2/lib/list.ma".
+
+(* LENGTH OF A LIST *********************************************************)
+
+rec definition length A (l:list A) on l ≝ match l with
+[ nil ⇒ 0
+| cons _ l ⇒ ↑(length A l)
+].
+
+interpretation "length (list)"
+ 'card l = (length ? l).
+
+(* Basic properties *********************************************************)
+
+lemma length_nil (A:Type[0]): |nil A| = 0.
+// qed.
+
+lemma length_cons (A:Type[0]) (l:list A) (a:A): |a⨮l| = ↑|l|.
+// qed.
+
+(* Basic inversion lemmas ***************************************************)
+
+lemma length_inv_zero_dx (A:Type[0]) (l:list A): |l| = 0 → l = Ⓔ.
+#A * // #a #l >length_cons #H destruct
+qed-.
+
+lemma length_inv_zero_sn (A:Type[0]) (l:list A): 0 = |l| → l = Ⓔ.
+/2 width=1 by length_inv_zero_dx/ qed-.
+
+lemma length_inv_succ_dx (A:Type[0]) (l:list A) (x): |l| = ↑x →
+ ∃∃tl,a. x = |tl| & l = a ⨮ tl.
+#A * /2 width=4 by ex2_2_intro/
+>length_nil #x #H destruct
+qed-.
+
+lemma length_inv_succ_sn (A:Type[0]) (l:list A) (x): ↑x = |l| →
+ ∃∃tl,a. x = |tl| & l = a ⨮ tl.
+/2 width=1 by length_inv_succ_dx/ qed.
[ { "extensions to the library" * } {
[ { "" * } {
[ "stream ( ? ⨮{?} ? )" "stream_eq ( ? ≗{?} ? )" "stream_hdtl ( ⫰{?}? )" "stream_tls ( ⫰*{?}[?]? )" * ]
- [ "list ( Ⓔ{?} ) ( ? ⨮{?} ? ) ( |?| )" * ]
+ [ "list ( Ⓔ{?} ) ( ? ⨮{?} ? )" "list_length ( |?| )" * ]
[ "bool ( Ⓕ ) ( Ⓣ )" "arith ( ?^? ) ( ↑? ) ( ↓? ) ( ? ∨ ? ) ( ? ∧ ? )" * ]
[ "logic ( ⊥ ) ( ⊤ )" "relations ( ? ⊆ ? )" "functions" "exteq ( ? ≐{?,?} ? )" "star" "ltc" * ]
}