--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| A.Asperti. C.Sacerdoti Coen. *)
+(* ||A|| E.Tassi. S.Zacchiroli *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU Lesser General Public License Version 2.1 *)
+(* *)
+(**************************************************************************)
+
+(* Code ported from the Coq theorem prover by Claudio Sacerdoti Coen *)
+(* Original author: Claudio Sacerdoti Coen. for the Coq system *)
+
+set "baseuri" "cic:/matita/technicalities/setoids".
+
+include "higher_order_defs/relations.ma".
+include "datatypes/constructors.ma".
+
+(* DEFINITIONS OF Relation_Class AND n-ARY Morphism_Theory *)
+
+(* X will be used to distinguish covariant arguments whose type is an *)
+(* Asymmetric* relation from contravariant arguments of the same type *)
+inductive X_Relation_Class (X: Type) : Type ≝
+ SymmetricReflexive :
+ ∀A,Aeq. symmetric A Aeq → reflexive ? Aeq → X_Relation_Class X
+ | AsymmetricReflexive : X → ∀A,Aeq. reflexive A Aeq → X_Relation_Class X
+ | SymmetricAreflexive : ∀A,Aeq. symmetric A Aeq → X_Relation_Class X
+ | AsymmetricAreflexive : X → ∀A.∀Aeq : relation A. X_Relation_Class X
+ | Leibniz : Type → X_Relation_Class X.
+
+inductive variance : Set ≝
+ Covariant : variance
+ | Contravariant : variance.
+
+definition Argument_Class ≝ X_Relation_Class variance.
+definition Relation_Class ≝ X_Relation_Class unit.
+
+inductive Reflexive_Relation_Class : Type :=
+ RSymmetric :
+ ∀A,Aeq. symmetric A Aeq → reflexive ? Aeq → Reflexive_Relation_Class
+ | RAsymmetric :
+ ∀A,Aeq. reflexive A Aeq → Reflexive_Relation_Class
+ | RLeibniz : Type → Reflexive_Relation_Class.
+
+inductive Areflexive_Relation_Class : Type :=
+ | ASymmetric : ∀A,Aeq. symmetric A Aeq → Areflexive_Relation_Class
+ | AAsymmetric : ∀A.∀Aeq : relation A. Areflexive_Relation_Class.
+
+definition relation_class_of_argument_class : Argument_Class → Relation_Class.
+ intro;
+ unfold in a ⊢ %;
+ elim a;
+ [ apply (SymmetricReflexive ? ? ? H H1)
+ | apply (AsymmetricReflexive ? something ? ? H)
+ | apply (SymmetricAreflexive ? ? ? H)
+ | apply (AsymmetricAreflexive ? something ? r)
+ | apply (Leibniz ? T1)
+ ]
+qed.
+
+definition carrier_of_relation_class : ∀X. X_Relation_Class X → Type.
+ intros;
+ elim x;
+ [1,2,3,4,5: exact T1]
+qed.
+
+definition relation_of_relation_class :
+ ∀X,R. carrier_of_relation_class X R → carrier_of_relation_class X R → Prop.
+ intros 2;
+ elim R 0;
+ simplify;
+ [1,2: intros 4; apply r
+ |3,4: intros 3; apply r
+ | apply eq
+ ]
+qed.
+
+lemma about_carrier_of_relation_class_and_relation_class_of_argument_class :
+ ∀R.
+ carrier_of_relation_class ? (relation_class_of_argument_class R) =
+ carrier_of_relation_class ? R.
+ intro;
+ elim R;
+ reflexivity.
+ qed.
+
+inductive nelistT (A : Type) : Type :=
+ singl : A → nelistT A
+ | cons : A → nelistT A → nelistT A.
+
+definition Arguments := nelistT Argument_Class.
+
+definition function_type_of_morphism_signature :
+ Arguments → Relation_Class → Type.
+ intros (In Out);
+ elim In
+ [ exact (carrier_of_relation_class ? t → carrier_of_relation_class ? Out)
+ | exact (carrier_of_relation_class ? t → T)
+ ]
+qed.
+
+definition make_compatibility_goal_aux:
+ ∀In,Out.∀f,g:function_type_of_morphism_signature In Out.Prop.
+ intros 2;
+ elim In (a); simplify in f f1;
+ generalize in match f; clear f;
+ generalize in match f1; clear f1;
+ [ elim a; simplify in f f1;
+ [ exact (∀x1,x2. r x1 x2 → relation_of_relation_class ? Out (f x1) (f1 x2))
+ | elim t;
+ [ exact (∀x1,x2. r x1 x2 → relation_of_relation_class ? Out (f x1) (f1 x2))
+ | exact (∀x1,x2. r x2 x1 → relation_of_relation_class ? Out (f x1) (f1 x2))
+ ]
+ | exact (∀x1,x2. r x1 x2 → relation_of_relation_class ? Out (f x1) (f1 x2))
+ | elim t;
+ [ exact (∀x1,x2. r x1 x2 → relation_of_relation_class ? Out (f x1) (f1 x2))
+ | exact (∀x1,x2. r x2 x1 → relation_of_relation_class ? Out (f x1) (f1 x2))
+ ]
+ | exact (∀x. relation_of_relation_class ? Out (f x) (f1 x))
+ ]
+ | change with
+ ((carrier_of_relation_class ? t → function_type_of_morphism_signature n Out) →
+ (carrier_of_relation_class ? t → function_type_of_morphism_signature n Out) →
+ Prop).
+ elim t; simplify in f f1;
+ [ exact (∀x1,x2. r x1 x2 → R (f x1) (f1 x2))
+ | elim t1;
+ [ exact (∀x1,x2. r x1 x2 → R (f x1) (f1 x2))
+ | exact (∀x1,x2. r x2 x1 → R (f x1) (f1 x2))
+ ]
+ | exact (∀x1,x2. r x1 x2 → R (f x1) (f1 x2))
+ | elim t1;
+ [ exact (∀x1,x2. r x1 x2 → R (f x1) (f1 x2))
+ | exact (∀x1,x2. r x2 x1 → R (f x1) (f1 x2))
+ ]
+ | exact (∀x. R (f x) (f1 x))
+ ]
+ ]
+qed.
+
+definition make_compatibility_goal :=
+ λIn,Out,f. make_compatibility_goal_aux In Out f f.
+
+record Morphism_Theory In Out : Type :=
+ { Function : function_type_of_morphism_signature In Out;
+ Compat : make_compatibility_goal In Out Function
+ }.
+
+definition list_of_Leibniz_of_list_of_types: nelistT Type → Arguments.
+ induction 1.
+ exact (singl (Leibniz ? a)).
+ exact (cons (Leibniz ? a) IHX).
+qed.
+
+(* every function is a morphism from Leibniz+ to Leibniz *)
+definition morphism_theory_of_function :
+ ∀(In: nelistT Type) (Out: Type).
+ let In' := list_of_Leibniz_of_list_of_types In in
+ let Out' := Leibniz ? Out in
+ function_type_of_morphism_signature In' Out' →
+ Morphism_Theory In' Out'.
+ intros.
+ exists X.
+ induction In; unfold make_compatibility_goal; simpl.
+ reflexivity.
+ intro; apply (IHIn (X x)).
+qed.
+
+(* THE iff RELATION CLASS *)
+
+definition Iff_Relation_Class : Relation_Class.
+ eapply (@SymmetricReflexive unit ? iff).
+ exact iff_sym.
+ exact iff_refl.
+qed.
+
+(* THE impl RELATION CLASS *)
+
+definition impl (A B: Prop) := A → B.
+
+Theorem impl_refl: reflexive ? impl.
+ hnf; unfold impl; tauto.
+Qed.
+
+definition Impl_Relation_Class : Relation_Class.
+ eapply (@AsymmetricReflexive unit tt ? impl).
+ exact impl_refl.
+qed.
+
+(* UTILITY FUNCTIONS TO PROVE THAT EVERY TRANSITIVE RELATION IS A MORPHISM *)
+
+definition equality_morphism_of_symmetric_areflexive_transitive_relation:
+ ∀(A: Type)(Aeq: relation A)(sym: symmetric ? Aeq)(trans: transitive ? Aeq).
+ let ASetoidClass := SymmetricAreflexive ? sym in
+ (Morphism_Theory (cons ASetoidClass (singl ASetoidClass)) Iff_Relation_Class).
+ intros.
+ exists Aeq.
+ unfold make_compatibility_goal; simpl; split; eauto.
+qed.
+
+definition equality_morphism_of_symmetric_reflexive_transitive_relation:
+ ∀(A: Type)(Aeq: relation A)(refl: reflexive ? Aeq)(sym: symmetric ? Aeq)
+ (trans: transitive ? Aeq). let ASetoidClass := SymmetricReflexive ? sym refl in
+ (Morphism_Theory (cons ASetoidClass (singl ASetoidClass)) Iff_Relation_Class).
+ intros.
+ exists Aeq.
+ unfold make_compatibility_goal; simpl; split; eauto.
+qed.
+
+definition equality_morphism_of_asymmetric_areflexive_transitive_relation:
+ ∀(A: Type)(Aeq: relation A)(trans: transitive ? Aeq).
+ let ASetoidClass1 := AsymmetricAreflexive Contravariant Aeq in
+ let ASetoidClass2 := AsymmetricAreflexive Covariant Aeq in
+ (Morphism_Theory (cons ASetoidClass1 (singl ASetoidClass2)) Impl_Relation_Class).
+ intros.
+ exists Aeq.
+ unfold make_compatibility_goal; simpl; unfold impl; eauto.
+qed.
+
+definition equality_morphism_of_asymmetric_reflexive_transitive_relation:
+ ∀(A: Type)(Aeq: relation A)(refl: reflexive ? Aeq)(trans: transitive ? Aeq).
+ let ASetoidClass1 := AsymmetricReflexive Contravariant refl in
+ let ASetoidClass2 := AsymmetricReflexive Covariant refl in
+ (Morphism_Theory (cons ASetoidClass1 (singl ASetoidClass2)) Impl_Relation_Class).
+ intros.
+ exists Aeq.
+ unfold make_compatibility_goal; simpl; unfold impl; eauto.
+qed.
+
+(* iff AS A RELATION *)
+
+Add Relation Prop iff
+ reflexivity proved by iff_refl
+ symmetry proved by iff_sym
+ transitivity proved by iff_trans
+ as iff_relation.
+
+(* every predicate is morphism from Leibniz+ to Iff_Relation_Class *)
+definition morphism_theory_of_predicate :
+ ∀(In: nelistT Type).
+ let In' := list_of_Leibniz_of_list_of_types In in
+ function_type_of_morphism_signature In' Iff_Relation_Class →
+ Morphism_Theory In' Iff_Relation_Class.
+ intros.
+ exists X.
+ induction In; unfold make_compatibility_goal; simpl.
+ intro; apply iff_refl.
+ intro; apply (IHIn (X x)).
+qed.
+
+(* impl AS A RELATION *)
+
+Theorem impl_trans: transitive ? impl.
+ hnf; unfold impl; tauto.
+Qed.
+
+Add Relation Prop impl
+ reflexivity proved by impl_refl
+ transitivity proved by impl_trans
+ as impl_relation.
+
+(* THE CIC PART OF THE REFLEXIVE TACTIC (SETOID REWRITE) *)
+
+inductive rewrite_direction : Type :=
+ Left2Right
+ | Right2Left.
+
+Implicit Type dir: rewrite_direction.
+
+definition variance_of_argument_class : Argument_Class → option variance.
+ destruct 1.
+ exact None.
+ exact (Some v).
+ exact None.
+ exact (Some v).
+ exact None.
+qed.
+
+definition opposite_direction :=
+ fun dir =>
+ match dir with
+ Left2Right => Right2Left
+ | Right2Left => Left2Right
+ end.
+
+Lemma opposite_direction_idempotent:
+ ∀dir. (opposite_direction (opposite_direction dir)) = dir.
+ destruct dir; reflexivity.
+Qed.
+
+inductive check_if_variance_is_respected :
+ option variance → rewrite_direction → rewrite_direction → Prop
+:=
+ MSNone : ∀dir dir'. check_if_variance_is_respected None dir dir'
+ | MSCovariant : ∀dir. check_if_variance_is_respected (Some Covariant) dir dir
+ | MSContravariant :
+ ∀dir.
+ check_if_variance_is_respected (Some Contravariant) dir (opposite_direction dir).
+
+definition relation_class_of_reflexive_relation_class:
+ Reflexive_Relation_Class → Relation_Class.
+ induction 1.
+ exact (SymmetricReflexive ? s r).
+ exact (AsymmetricReflexive tt r).
+ exact (Leibniz ? T).
+qed.
+
+definition relation_class_of_areflexive_relation_class:
+ Areflexive_Relation_Class → Relation_Class.
+ induction 1.
+ exact (SymmetricAreflexive ? s).
+ exact (AsymmetricAreflexive tt Aeq).
+qed.
+
+definition carrier_of_reflexive_relation_class :=
+ fun R => carrier_of_relation_class (relation_class_of_reflexive_relation_class R).
+
+definition carrier_of_areflexive_relation_class :=
+ fun R => carrier_of_relation_class (relation_class_of_areflexive_relation_class R).
+
+definition relation_of_areflexive_relation_class :=
+ fun R => relation_of_relation_class (relation_class_of_areflexive_relation_class R).
+
+inductive Morphism_Context Hole dir : Relation_Class → rewrite_direction → Type :=
+ App :
+ ∀In Out dir'.
+ Morphism_Theory In Out → Morphism_Context_List Hole dir dir' In →
+ Morphism_Context Hole dir Out dir'
+ | ToReplace : Morphism_Context Hole dir Hole dir
+ | ToKeep :
+ ∀S dir'.
+ carrier_of_reflexive_relation_class S →
+ Morphism_Context Hole dir (relation_class_of_reflexive_relation_class S) dir'
+ | ProperElementToKeep :
+ ∀S dir' (x: carrier_of_areflexive_relation_class S).
+ relation_of_areflexive_relation_class S x x →
+ Morphism_Context Hole dir (relation_class_of_areflexive_relation_class S) dir'
+with Morphism_Context_List Hole dir :
+ rewrite_direction → Arguments → Type
+:=
+ fcl_singl :
+ ∀S dir' dir''.
+ check_if_variance_is_respected (variance_of_argument_class S) dir' dir'' →
+ Morphism_Context Hole dir (relation_class_of_argument_class S) dir' →
+ Morphism_Context_List Hole dir dir'' (singl S)
+ | fcl_cons :
+ ∀S L dir' dir''.
+ check_if_variance_is_respected (variance_of_argument_class S) dir' dir'' →
+ Morphism_Context Hole dir (relation_class_of_argument_class S) dir' →
+ Morphism_Context_List Hole dir dir'' L →
+ Morphism_Context_List Hole dir dir'' (cons S L).
+
+Scheme Morphism_Context_rect2 := Induction for Morphism_Context Sort Type
+with Morphism_Context_List_rect2 := Induction for Morphism_Context_List Sort Type.
+
+definition product_of_arguments : Arguments → Type.
+ induction 1.
+ exact (carrier_of_relation_class a).
+ exact (prod (carrier_of_relation_class a) IHX).
+qed.
+
+definition get_rewrite_direction: rewrite_direction → Argument_Class → rewrite_direction.
+ intros dir R.
+destruct (variance_of_argument_class R).
+ destruct v.
+ exact dir. (* covariant *)
+ exact (opposite_direction dir). (* contravariant *)
+ exact dir. (* symmetric relation *)
+qed.
+
+definition directed_relation_of_relation_class:
+ ∀dir (R: Relation_Class).
+ carrier_of_relation_class R → carrier_of_relation_class R → Prop.
+ destruct 1.
+ exact (@relation_of_relation_class unit).
+ intros; exact (relation_of_relation_class ? X0 X).
+qed.
+
+definition directed_relation_of_argument_class:
+ ∀dir (R: Argument_Class).
+ carrier_of_relation_class R → carrier_of_relation_class R → Prop.
+ intros dir R.
+ rewrite <-
+ (about_carrier_of_relation_class_and_relation_class_of_argument_class R).
+ exact (directed_relation_of_relation_class dir (relation_class_of_argument_class R)).
+qed.
+
+
+definition relation_of_product_of_arguments:
+ ∀dir In.
+ product_of_arguments In → product_of_arguments In → Prop.
+ induction In.
+ simpl.
+ exact (directed_relation_of_argument_class (get_rewrite_direction dir a) a).
+
+ simpl; intros.
+ destruct X; destruct X0.
+ apply and.
+ exact
+ (directed_relation_of_argument_class (get_rewrite_direction dir a) a c c0).
+ exact (IHIn p p0).
+qed.
+
+definition apply_morphism:
+ ∀In Out (m: function_type_of_morphism_signature In Out)
+ (args: product_of_arguments In). carrier_of_relation_class Out.
+ intros.
+ induction In.
+ exact (m args).
+ simpl in m. args.
+ destruct args.
+ exact (IHIn (m c) p).
+qed.
+
+Theorem apply_morphism_compatibility_Right2Left:
+ ∀In Out (m1 m2: function_type_of_morphism_signature In Out)
+ (args1 args2: product_of_arguments In).
+ make_compatibility_goal_aux ? ? m1 m2 →
+ relation_of_product_of_arguments Right2Left ? args1 args2 →
+ directed_relation_of_relation_class Right2Left ?
+ (apply_morphism ? ? m2 args1)
+ (apply_morphism ? ? m1 args2).
+ induction In; intros.
+ simpl in m1. m2. args1. args2. H0 |- *.
+ destruct a; simpl in H; hnf in H0.
+ apply H; exact H0.
+ destruct v; simpl in H0; apply H; exact H0.
+ apply H; exact H0.
+ destruct v; simpl in H0; apply H; exact H0.
+ rewrite H0; apply H; exact H0.
+
+ simpl in m1. m2. args1. args2. H0 |- *.
+ destruct args1; destruct args2; simpl.
+ destruct H0.
+ simpl in H.
+ destruct a; simpl in H.
+ apply IHIn.
+ apply H; exact H0.
+ exact H1.
+ destruct v.
+ apply IHIn.
+ apply H; exact H0.
+ exact H1.
+ apply IHIn.
+ apply H; exact H0.
+ exact H1.
+ apply IHIn.
+ apply H; exact H0.
+ exact H1.
+ destruct v.
+ apply IHIn.
+ apply H; exact H0.
+ exact H1.
+ apply IHIn.
+ apply H; exact H0.
+ exact H1.
+ rewrite H0; apply IHIn.
+ apply H.
+ exact H1.
+Qed.
+
+Theorem apply_morphism_compatibility_Left2Right:
+ ∀In Out (m1 m2: function_type_of_morphism_signature In Out)
+ (args1 args2: product_of_arguments In).
+ make_compatibility_goal_aux ? ? m1 m2 →
+ relation_of_product_of_arguments Left2Right ? args1 args2 →
+ directed_relation_of_relation_class Left2Right ?
+ (apply_morphism ? ? m1 args1)
+ (apply_morphism ? ? m2 args2).
+ induction In; intros.
+ simpl in m1. m2. args1. args2. H0 |- *.
+ destruct a; simpl in H; hnf in H0.
+ apply H; exact H0.
+ destruct v; simpl in H0; apply H; exact H0.
+ apply H; exact H0.
+ destruct v; simpl in H0; apply H; exact H0.
+ rewrite H0; apply H; exact H0.
+
+ simpl in m1. m2. args1. args2. H0 |- *.
+ destruct args1; destruct args2; simpl.
+ destruct H0.
+ simpl in H.
+ destruct a; simpl in H.
+ apply IHIn.
+ apply H; exact H0.
+ exact H1.
+ destruct v.
+ apply IHIn.
+ apply H; exact H0.
+ exact H1.
+ apply IHIn.
+ apply H; exact H0.
+ exact H1.
+ apply IHIn.
+ apply H; exact H0.
+ exact H1.
+ apply IHIn.
+ destruct v; simpl in H. H0; apply H; exact H0.
+ exact H1.
+ rewrite H0; apply IHIn.
+ apply H.
+ exact H1.
+Qed.
+
+definition interp :
+ ∀Hole dir Out dir'. carrier_of_relation_class Hole →
+ Morphism_Context Hole dir Out dir' → carrier_of_relation_class Out.
+ intros Hole dir Out dir' H t.
+ elim t using
+ (@Morphism_Context_rect2 Hole dir (fun S ? ? => carrier_of_relation_class S)
+ (fun ? L fcl => product_of_arguments L));
+ intros.
+ exact (apply_morphism ? ? (Function m) X).
+ exact H.
+ exact c.
+ exact x.
+ simpl;
+ rewrite <-
+ (about_carrier_of_relation_class_and_relation_class_of_argument_class S);
+ exact X.
+ split.
+ rewrite <-
+ (about_carrier_of_relation_class_and_relation_class_of_argument_class S);
+ exact X.
+ exact X0.
+qed.
+
+(*CSC: interp and interp_relation_class_list should be mutually defined. since
+ the proof term of each one contains the proof term of the other one. However
+ I cannot do that interactively (I should write the Fix by hand) *)
+definition interp_relation_class_list :
+ ∀Hole dir dir' (L: Arguments). carrier_of_relation_class Hole →
+ Morphism_Context_List Hole dir dir' L → product_of_arguments L.
+ intros Hole dir dir' L H t.
+ elim t using
+ (@Morphism_Context_List_rect2 Hole dir (fun S ? ? => carrier_of_relation_class S)
+ (fun ? L fcl => product_of_arguments L));
+ intros.
+ exact (apply_morphism ? ? (Function m) X).
+ exact H.
+ exact c.
+ exact x.
+ simpl;
+ rewrite <-
+ (about_carrier_of_relation_class_and_relation_class_of_argument_class S);
+ exact X.
+ split.
+ rewrite <-
+ (about_carrier_of_relation_class_and_relation_class_of_argument_class S);
+ exact X.
+ exact X0.
+qed.
+
+Theorem setoid_rewrite:
+ ∀Hole dir Out dir' (E1 E2: carrier_of_relation_class Hole)
+ (E: Morphism_Context Hole dir Out dir').
+ (directed_relation_of_relation_class dir Hole E1 E2) →
+ (directed_relation_of_relation_class dir' Out (interp E1 E) (interp E2 E)).
+ intros.
+ elim E using
+ (@Morphism_Context_rect2 Hole dir
+ (fun S dir'' E => directed_relation_of_relation_class dir'' S (interp E1 E) (interp E2 E))
+ (fun dir'' L fcl =>
+ relation_of_product_of_arguments dir'' ?
+ (interp_relation_class_list E1 fcl)
+ (interp_relation_class_list E2 fcl))); intros.
+ change (directed_relation_of_relation_class dir'0 Out0
+ (apply_morphism ? ? (Function m) (interp_relation_class_list E1 m0))
+ (apply_morphism ? ? (Function m) (interp_relation_class_list E2 m0))).
+ destruct dir'0.
+ apply apply_morphism_compatibility_Left2Right.
+ exact (Compat m).
+ exact H0.
+ apply apply_morphism_compatibility_Right2Left.
+ exact (Compat m).
+ exact H0.
+
+ exact H.
+
+ unfold interp. Morphism_Context_rect2.
+ (*CSC: reflexivity used here*)
+ destruct S; destruct dir'0; simpl; (apply r || reflexivity).
+
+ destruct dir'0; exact r.
+
+ destruct S; unfold directed_relation_of_argument_class; simpl in H0 |- *;
+ unfold get_rewrite_direction; simpl.
+ destruct dir'0; destruct dir'';
+ (exact H0 ||
+ unfold directed_relation_of_argument_class; simpl; apply s; exact H0).
+ (* the following mess with generalize/clear/intros is to help Coq resolving *)
+ (* second order unification problems. *)
+ generalize m c H0; clear H0 m c; inversion c;
+ generalize m c; clear m c; rewrite <- H1; rewrite <- H2; intros;
+ (exact H3 || rewrite (opposite_direction_idempotent dir'0); apply H3).
+ destruct dir'0; destruct dir'';
+ (exact H0 ||
+ unfold directed_relation_of_argument_class; simpl; apply s; exact H0).
+(* the following mess with generalize/clear/intros is to help Coq resolving *)
+ (* second order unification problems. *)
+ generalize m c H0; clear H0 m c; inversion c;
+ generalize m c; clear m c; rewrite <- H1; rewrite <- H2; intros;
+ (exact H3 || rewrite (opposite_direction_idempotent dir'0); apply H3).
+ destruct dir'0; destruct dir''; (exact H0 || hnf; symmetry; exact H0).
+
+ change
+ (directed_relation_of_argument_class (get_rewrite_direction dir'' S) S
+ (eq_rect ? (fun T : Type => T) (interp E1 m) ?
+ (about_carrier_of_relation_class_and_relation_class_of_argument_class S))
+ (eq_rect ? (fun T : Type => T) (interp E2 m) ?
+ (about_carrier_of_relation_class_and_relation_class_of_argument_class S)) /\
+ relation_of_product_of_arguments dir'' ?
+ (interp_relation_class_list E1 m0) (interp_relation_class_list E2 m0)).
+ split.
+ clear m0 H1; destruct S; simpl in H0 |- *; unfold get_rewrite_direction; simpl.
+ destruct dir''; destruct dir'0; (exact H0 || hnf; apply s; exact H0).
+ inversion c.
+ rewrite <- H3; exact H0.
+ rewrite (opposite_direction_idempotent dir'0); exact H0.
+ destruct dir''; destruct dir'0; (exact H0 || hnf; apply s; exact H0).
+ inversion c.
+ rewrite <- H3; exact H0.
+ rewrite (opposite_direction_idempotent dir'0); exact H0.
+ destruct dir''; destruct dir'0; (exact H0 || hnf; symmetry; exact H0).
+ exact H1.
+Qed.
+
+(* BEGIN OF UTILITY/BACKWARD COMPATIBILITY PART *)
+
+record Setoid_Theory (A: Type) (Aeq: relation A) : Prop :=
+ {Seq_refl : ∀x:A. Aeq x x;
+ Seq_sym : ∀x y:A. Aeq x y → Aeq y x;
+ Seq_trans : ∀x y z:A. Aeq x y → Aeq y z → Aeq x z}.
+
+(* END OF UTILITY/BACKWARD COMPATIBILITY PART *)
+
+(* A FEW EXAMPLES ON iff *)
+
+(* impl IS A MORPHISM *)
+
+Add Morphism impl with signature iff ==> iff ==> iff as Impl_Morphism.
+unfold impl; tauto.
+Qed.
+
+(* and IS A MORPHISM *)
+
+Add Morphism and with signature iff ==> iff ==> iff as And_Morphism.
+ tauto.
+Qed.
+
+(* or IS A MORPHISM *)
+
+Add Morphism or with signature iff ==> iff ==> iff as Or_Morphism.
+ tauto.
+Qed.
+
+(* not IS A MORPHISM *)
+
+Add Morphism not with signature iff ==> iff as Not_Morphism.
+ tauto.
+Qed.
+
+(* THE SAME EXAMPLES ON impl *)
+
+Add Morphism and with signature impl ++> impl ++> impl as And_Morphism2.
+ unfold impl; tauto.
+Qed.
+
+Add Morphism or with signature impl ++> impl ++> impl as Or_Morphism2.
+ unfold impl; tauto.
+Qed.
+
+Add Morphism not with signature impl -→ impl as Not_Morphism2.
+ unfold impl; tauto.
+Qed.
+
+(* FOR BACKWARD COMPATIBILITY *)
+Implicit Arguments Setoid_Theory [].
+Implicit Arguments Seq_refl [].
+Implicit Arguments Seq_sym [].
+Implicit Arguments Seq_trans [].
+
+
+(* Some tactics for manipulating Setoid Theory not officially
+ declared as Setoid. *)
+
+Ltac trans_st x := match goal with
+ | H : Setoid_Theory ? ?eqA |- ?eqA ? ? =>
+ apply (Seq_trans ? ? H) with x; auto
+ end.
+
+Ltac sym_st := match goal with
+ | H : Setoid_Theory ? ?eqA |- ?eqA ? ? =>
+ apply (Seq_sym ? ? H); auto
+ end.
+
+Ltac refl_st := match goal with
+ | H : Setoid_Theory ? ?eqA |- ?eqA ? ? =>
+ apply (Seq_refl ? ? H); auto
+ end.
+
+definition gen_st : ∀A : Set. Setoid_Theory ? (@eq A).
+Proof. constructor; congruence. Qed.
+