coercion cic:/matita/metric_lattice/ml_mspace.con.
-record is_mlattice (R : todgroup) (ml: mlattice_ R) : Type ≝ {
- ml_prop1: ∀a,b:ml. 0 < δ a b → a # b;
- ml_prop2: ∀a,b,c:ml. δ (a∨b) (a∨c) + δ (a∧b) (a∧c) ≤ δ b c
-}.
-
record mlattice (R : todgroup) : Type ≝ {
ml_carr :> mlattice_ R;
- ml_props:> is_mlattice R ml_carr
+ ml_prop1: ∀a,b:ml_carr. 0 < δ a b → a # b;
+ ml_prop2: ∀a,b,c:ml_carr. δ (a∨b) (a∨c) + δ (a∧b) (a∧c) ≤ δ b c
}.
lemma eq_to_ndlt0: ∀R.∀ml:mlattice R.∀a,b:ml. a ≈ b → ¬ 0 < δ a b.
-intros (R ml a b E); intro H; apply E; apply (ml_prop1 ?? ml);
+intros (R ml a b E); intro H; apply E; apply ml_prop1;
assumption;
qed.
lemma eq_to_dzero: ∀R.∀ml:mlattice R.∀x,y:ml.x ≈ y → δ x y ≈ 0.
intros (R ml x y H); intro H1; apply H; clear H;
-apply (ml_prop1 ?? ml); split [apply mpositive] apply ap_symmetric;
+apply ml_prop1; split [apply mpositive] apply ap_symmetric;
assumption;
qed.
qed.
lemma dap_to_ap: ∀R.∀ml:mlattice R.∀x,y:ml. δ x y # 0 → x # y.
-intros (R ml x y H); apply (ml_prop1 ?? ml); split; [apply mpositive;]
+intros (R ml x y H); apply ml_prop1; split; [apply mpositive;]
apply ap_symmetric; assumption;
qed.
lemma le_mtri:
∀R.∀ml:mlattice R.∀x,y,z:ml. x ≤ y → y ≤ z → δ x z ≈ δ x y + δ y z.
intros (R ml x y z Lxy Lyz); apply le_le_eq; [apply mtineq]
-apply (le_transitive ????? (ml_prop2 ?? ml (y) ??));
+apply (le_transitive ????? (ml_prop2 ?? (y) ??));
cut ( δx y+ δy z ≈ δ(y∨x) (y∨z)+ δ(y∧x) (y∧z)); [
apply (le_rewr ??? (δx y+ δy z)); [assumption] apply le_reflexive]
lapply (le_to_eqm ??? Lxy) as Dxm; lapply (le_to_eqm ??? Lyz) as Dym;