##| ##32: napply eq_to_eqbit32
##]
nqed.
+
+nlemma decidable_bit1 : ∀x:bitrigesim.decidable (t00 = x).
+ #x; nnormalize; nelim x;
+ ##[ ##1: napply (or_introl (? = ?) (? ≠ ?) …); napply refl_eq
+ ##| ##*: napply (or_intror (? = ?) (? ≠ ?) …); nnormalize; #H; napply False_ind; napply (bitrigesim_destruct … H)
+ ##]
+nqed.
+
+nlemma decidable_bit2 : ∀x:bitrigesim.decidable (t01 = x).
+ #x; nnormalize; nelim x;
+ ##[ ##2: napply (or_introl (? = ?) (? ≠ ?) …); napply refl_eq
+ ##| ##*: napply (or_intror (? = ?) (? ≠ ?) …); nnormalize; #H; napply False_ind; napply (bitrigesim_destruct … H)
+ ##]
+nqed.
+
+nlemma decidable_bit3 : ∀x:bitrigesim.decidable (t02 = x).
+ #x; nnormalize; nelim x;
+ ##[ ##3: napply (or_introl (? = ?) (? ≠ ?) …); napply refl_eq
+ ##| ##*: napply (or_intror (? = ?) (? ≠ ?) …); nnormalize; #H; napply False_ind; napply (bitrigesim_destruct … H)
+ ##]
+nqed.
+
+nlemma decidable_bit4 : ∀x:bitrigesim.decidable (t03 = x).
+ #x; nnormalize; nelim x;
+ ##[ ##4: napply (or_introl (? = ?) (? ≠ ?) …); napply refl_eq
+ ##| ##*: napply (or_intror (? = ?) (? ≠ ?) …); nnormalize; #H; napply False_ind; napply (bitrigesim_destruct … H)
+ ##]
+nqed.
+
+nlemma decidable_bit5 : ∀x:bitrigesim.decidable (t04 = x).
+ #x; nnormalize; nelim x;
+ ##[ ##5: napply (or_introl (? = ?) (? ≠ ?) …); napply refl_eq
+ ##| ##*: napply (or_intror (? = ?) (? ≠ ?) …); nnormalize; #H; napply False_ind; napply (bitrigesim_destruct … H)
+ ##]
+nqed.
+
+nlemma decidable_bit6 : ∀x:bitrigesim.decidable (t05 = x).
+ #x; nnormalize; nelim x;
+ ##[ ##6: napply (or_introl (? = ?) (? ≠ ?) …); napply refl_eq
+ ##| ##*: napply (or_intror (? = ?) (? ≠ ?) …); nnormalize; #H; napply False_ind; napply (bitrigesim_destruct … H)
+ ##]
+nqed.
+
+nlemma decidable_bit7 : ∀x:bitrigesim.decidable (t06 = x).
+ #x; nnormalize; nelim x;
+ ##[ ##7: napply (or_introl (? = ?) (? ≠ ?) …); napply refl_eq
+ ##| ##*: napply (or_intror (? = ?) (? ≠ ?) …); nnormalize; #H; napply False_ind; napply (bitrigesim_destruct … H)
+ ##]
+nqed.
+
+nlemma decidable_bit8 : ∀x:bitrigesim.decidable (t07 = x).
+ #x; nnormalize; nelim x;
+ ##[ ##8: napply (or_introl (? = ?) (? ≠ ?) …); napply refl_eq
+ ##| ##*: napply (or_intror (? = ?) (? ≠ ?) …); nnormalize; #H; napply False_ind; napply (bitrigesim_destruct … H)
+ ##]
+nqed.
+
+nlemma decidable_bit9 : ∀x:bitrigesim.decidable (t08 = x).
+ #x; nnormalize; nelim x;
+ ##[ ##9: napply (or_introl (? = ?) (? ≠ ?) …); napply refl_eq
+ ##| ##*: napply (or_intror (? = ?) (? ≠ ?) …); nnormalize; #H; napply False_ind; napply (bitrigesim_destruct … H)
+ ##]
+nqed.
+
+nlemma decidable_bit10 : ∀x:bitrigesim.decidable (t09 = x).
+ #x; nnormalize; nelim x;
+ ##[ ##10: napply (or_introl (? = ?) (? ≠ ?) …); napply refl_eq
+ ##| ##*: napply (or_intror (? = ?) (? ≠ ?) …); nnormalize; #H; napply False_ind; napply (bitrigesim_destruct … H)
+ ##]
+nqed.
+
+nlemma decidable_bit11 : ∀x:bitrigesim.decidable (t0A = x).
+ #x; nnormalize; nelim x;
+ ##[ ##11: napply (or_introl (? = ?) (? ≠ ?) …); napply refl_eq
+ ##| ##*: napply (or_intror (? = ?) (? ≠ ?) …); nnormalize; #H; napply False_ind; napply (bitrigesim_destruct … H)
+ ##]
+nqed.
+
+nlemma decidable_bit12 : ∀x:bitrigesim.decidable (t0B = x).
+ #x; nnormalize; nelim x;
+ ##[ ##12: napply (or_introl (? = ?) (? ≠ ?) …); napply refl_eq
+ ##| ##*: napply (or_intror (? = ?) (? ≠ ?) …); nnormalize; #H; napply False_ind; napply (bitrigesim_destruct … H)
+ ##]
+nqed.
+
+nlemma decidable_bit13 : ∀x:bitrigesim.decidable (t0C = x).
+ #x; nnormalize; nelim x;
+ ##[ ##13: napply (or_introl (? = ?) (? ≠ ?) …); napply refl_eq
+ ##| ##*: napply (or_intror (? = ?) (? ≠ ?) …); nnormalize; #H; napply False_ind; napply (bitrigesim_destruct … H)
+ ##]
+nqed.
+
+nlemma decidable_bit14 : ∀x:bitrigesim.decidable (t0D = x).
+ #x; nnormalize; nelim x;
+ ##[ ##14: napply (or_introl (? = ?) (? ≠ ?) …); napply refl_eq
+ ##| ##*: napply (or_intror (? = ?) (? ≠ ?) …); nnormalize; #H; napply False_ind; napply (bitrigesim_destruct … H)
+ ##]
+nqed.
+
+nlemma decidable_bit15 : ∀x:bitrigesim.decidable (t0E = x).
+ #x; nnormalize; nelim x;
+ ##[ ##15: napply (or_introl (? = ?) (? ≠ ?) …); napply refl_eq
+ ##| ##*: napply (or_intror (? = ?) (? ≠ ?) …); nnormalize; #H; napply False_ind; napply (bitrigesim_destruct … H)
+ ##]
+nqed.
+
+nlemma decidable_bit16 : ∀x:bitrigesim.decidable (t0F = x).
+ #x; nnormalize; nelim x;
+ ##[ ##16: napply (or_introl (? = ?) (? ≠ ?) …); napply refl_eq
+ ##| ##*: napply (or_intror (? = ?) (? ≠ ?) …); nnormalize; #H; napply False_ind; napply (bitrigesim_destruct … H)
+ ##]
+nqed.
+
+nlemma decidable_bit17 : ∀x:bitrigesim.decidable (t10 = x).
+ #x; nnormalize; nelim x;
+ ##[ ##17: napply (or_introl (? = ?) (? ≠ ?) …); napply refl_eq
+ ##| ##*: napply (or_intror (? = ?) (? ≠ ?) …); nnormalize; #H; napply False_ind; napply (bitrigesim_destruct … H)
+ ##]
+nqed.
+
+nlemma decidable_bit18 : ∀x:bitrigesim.decidable (t11 = x).
+ #x; nnormalize; nelim x;
+ ##[ ##18: napply (or_introl (? = ?) (? ≠ ?) …); napply refl_eq
+ ##| ##*: napply (or_intror (? = ?) (? ≠ ?) …); nnormalize; #H; napply False_ind; napply (bitrigesim_destruct … H)
+ ##]
+nqed.
+
+nlemma decidable_bit19 : ∀x:bitrigesim.decidable (t12 = x).
+ #x; nnormalize; nelim x;
+ ##[ ##19: napply (or_introl (? = ?) (? ≠ ?) …); napply refl_eq
+ ##| ##*: napply (or_intror (? = ?) (? ≠ ?) …); nnormalize; #H; napply False_ind; napply (bitrigesim_destruct … H)
+ ##]
+nqed.
+
+nlemma decidable_bit20 : ∀x:bitrigesim.decidable (t13 = x).
+ #x; nnormalize; nelim x;
+ ##[ ##20: napply (or_introl (? = ?) (? ≠ ?) …); napply refl_eq
+ ##| ##*: napply (or_intror (? = ?) (? ≠ ?) …); nnormalize; #H; napply False_ind; napply (bitrigesim_destruct … H)
+ ##]
+nqed.
+
+nlemma decidable_bit21 : ∀x:bitrigesim.decidable (t14 = x).
+ #x; nnormalize; nelim x;
+ ##[ ##21: napply (or_introl (? = ?) (? ≠ ?) …); napply refl_eq
+ ##| ##*: napply (or_intror (? = ?) (? ≠ ?) …); nnormalize; #H; napply False_ind; napply (bitrigesim_destruct … H)
+ ##]
+nqed.
+
+nlemma decidable_bit22 : ∀x:bitrigesim.decidable (t15 = x).
+ #x; nnormalize; nelim x;
+ ##[ ##22: napply (or_introl (? = ?) (? ≠ ?) …); napply refl_eq
+ ##| ##*: napply (or_intror (? = ?) (? ≠ ?) …); nnormalize; #H; napply False_ind; napply (bitrigesim_destruct … H)
+ ##]
+nqed.
+
+nlemma decidable_bit23 : ∀x:bitrigesim.decidable (t16 = x).
+ #x; nnormalize; nelim x;
+ ##[ ##23: napply (or_introl (? = ?) (? ≠ ?) …); napply refl_eq
+ ##| ##*: napply (or_intror (? = ?) (? ≠ ?) …); nnormalize; #H; napply False_ind; napply (bitrigesim_destruct … H)
+ ##]
+nqed.
+
+nlemma decidable_bit24 : ∀x:bitrigesim.decidable (t17 = x).
+ #x; nnormalize; nelim x;
+ ##[ ##24: napply (or_introl (? = ?) (? ≠ ?) …); napply refl_eq
+ ##| ##*: napply (or_intror (? = ?) (? ≠ ?) …); nnormalize; #H; napply False_ind; napply (bitrigesim_destruct … H)
+ ##]
+nqed.
+
+nlemma decidable_bit25 : ∀x:bitrigesim.decidable (t18 = x).
+ #x; nnormalize; nelim x;
+ ##[ ##25: napply (or_introl (? = ?) (? ≠ ?) …); napply refl_eq
+ ##| ##*: napply (or_intror (? = ?) (? ≠ ?) …); nnormalize; #H; napply False_ind; napply (bitrigesim_destruct … H)
+ ##]
+nqed.
+
+nlemma decidable_bit26 : ∀x:bitrigesim.decidable (t19 = x).
+ #x; nnormalize; nelim x;
+ ##[ ##26: napply (or_introl (? = ?) (? ≠ ?) …); napply refl_eq
+ ##| ##*: napply (or_intror (? = ?) (? ≠ ?) …); nnormalize; #H; napply False_ind; napply (bitrigesim_destruct … H)
+ ##]
+nqed.
+
+nlemma decidable_bit27 : ∀x:bitrigesim.decidable (t1A = x).
+ #x; nnormalize; nelim x;
+ ##[ ##27: napply (or_introl (? = ?) (? ≠ ?) …); napply refl_eq
+ ##| ##*: napply (or_intror (? = ?) (? ≠ ?) …); nnormalize; #H; napply False_ind; napply (bitrigesim_destruct … H)
+ ##]
+nqed.
+
+nlemma decidable_bit28 : ∀x:bitrigesim.decidable (t1B = x).
+ #x; nnormalize; nelim x;
+ ##[ ##28: napply (or_introl (? = ?) (? ≠ ?) …); napply refl_eq
+ ##| ##*: napply (or_intror (? = ?) (? ≠ ?) …); nnormalize; #H; napply False_ind; napply (bitrigesim_destruct … H)
+ ##]
+nqed.
+
+nlemma decidable_bit29 : ∀x:bitrigesim.decidable (t1C = x).
+ #x; nnormalize; nelim x;
+ ##[ ##29: napply (or_introl (? = ?) (? ≠ ?) …); napply refl_eq
+ ##| ##*: napply (or_intror (? = ?) (? ≠ ?) …); nnormalize; #H; napply False_ind; napply (bitrigesim_destruct … H)
+ ##]
+nqed.
+
+nlemma decidable_bit30 : ∀x:bitrigesim.decidable (t1D = x).
+ #x; nnormalize; nelim x;
+ ##[ ##30: napply (or_introl (? = ?) (? ≠ ?) …); napply refl_eq
+ ##| ##*: napply (or_intror (? = ?) (? ≠ ?) …); nnormalize; #H; napply False_ind; napply (bitrigesim_destruct … H)
+ ##]
+nqed.
+
+nlemma decidable_bit31 : ∀x:bitrigesim.decidable (t1E = x).
+ #x; nnormalize; nelim x;
+ ##[ ##31: napply (or_introl (? = ?) (? ≠ ?) …); napply refl_eq
+ ##| ##*: napply (or_intror (? = ?) (? ≠ ?) …); nnormalize; #H; napply False_ind; napply (bitrigesim_destruct … H)
+ ##]
+nqed.
+
+nlemma decidable_bit32 : ∀x:bitrigesim.decidable (t1F = x).
+ #x; nnormalize; nelim x;
+ ##[ ##32: napply (or_introl (? = ?) (? ≠ ?) …); napply refl_eq
+ ##| ##*: napply (or_intror (? = ?) (? ≠ ?) …); nnormalize; #H; napply False_ind; napply (bitrigesim_destruct … H)
+ ##]
+nqed.
+
+nlemma decidable_bit : ∀x,y:bitrigesim.decidable (x = y).
+ #x; nnormalize; nelim x;
+ ##[ ##1: napply decidable_bit1
+ ##| ##2: napply decidable_bit2
+ ##| ##3: napply decidable_bit3
+ ##| ##4: napply decidable_bit4
+ ##| ##5: napply decidable_bit5
+ ##| ##6: napply decidable_bit6
+ ##| ##7: napply decidable_bit7
+ ##| ##8: napply decidable_bit8
+ ##| ##9: napply decidable_bit9
+ ##| ##10: napply decidable_bit10
+ ##| ##11: napply decidable_bit11
+ ##| ##12: napply decidable_bit12
+ ##| ##13: napply decidable_bit13
+ ##| ##14: napply decidable_bit14
+ ##| ##15: napply decidable_bit15
+ ##| ##16: napply decidable_bit16
+ ##| ##17: napply decidable_bit17
+ ##| ##18: napply decidable_bit18
+ ##| ##19: napply decidable_bit19
+ ##| ##20: napply decidable_bit20
+ ##| ##21: napply decidable_bit21
+ ##| ##22: napply decidable_bit22
+ ##| ##23: napply decidable_bit23
+ ##| ##24: napply decidable_bit24
+ ##| ##25: napply decidable_bit25
+ ##| ##26: napply decidable_bit26
+ ##| ##27: napply decidable_bit27
+ ##| ##28: napply decidable_bit28
+ ##| ##29: napply decidable_bit29
+ ##| ##30: napply decidable_bit30
+ ##| ##31: napply decidable_bit31
+ ##| ##32: napply decidable_bit32
+ ##]
+nqed.
+
+nlemma neqbit_to_neq1 : ∀t2.eq_bit t00 t2 = false → t00 ≠ t2.
+ #t2; ncases t2; nnormalize; #H;
+ ##[ ##1: napply (bool_destruct … H)
+ ##| ##*: #H1; napply False_ind; napply (bitrigesim_destruct … H1)
+ ##]
+nqed.
+
+nlemma neqbit_to_neq2 : ∀t2.eq_bit t01 t2 = false → t01 ≠ t2.
+ #t2; ncases t2; nnormalize; #H;
+ ##[ ##2: napply (bool_destruct … H)
+ ##| ##*: #H1; napply False_ind; napply (bitrigesim_destruct … H1)
+ ##]
+nqed.
+
+nlemma neqbit_to_neq3 : ∀t2.eq_bit t02 t2 = false → t02 ≠ t2.
+ #t2; ncases t2; nnormalize; #H;
+ ##[ ##3: napply (bool_destruct … H)
+ ##| ##*: #H1; napply False_ind; napply (bitrigesim_destruct … H1)
+ ##]
+nqed.
+
+nlemma neqbit_to_neq4 : ∀t2.eq_bit t03 t2 = false → t03 ≠ t2.
+ #t2; ncases t2; nnormalize; #H;
+ ##[ ##4: napply (bool_destruct … H)
+ ##| ##*: #H1; napply False_ind; napply (bitrigesim_destruct … H1)
+ ##]
+nqed.
+
+nlemma neqbit_to_neq5 : ∀t2.eq_bit t04 t2 = false → t04 ≠ t2.
+ #t2; ncases t2; nnormalize; #H;
+ ##[ ##5: napply (bool_destruct … H)
+ ##| ##*: #H1; napply False_ind; napply (bitrigesim_destruct … H1)
+ ##]
+nqed.
+
+nlemma neqbit_to_neq6 : ∀t2.eq_bit t05 t2 = false → t05 ≠ t2.
+ #t2; ncases t2; nnormalize; #H;
+ ##[ ##6: napply (bool_destruct … H)
+ ##| ##*: #H1; napply False_ind; napply (bitrigesim_destruct … H1)
+ ##]
+nqed.
+
+nlemma neqbit_to_neq7 : ∀t2.eq_bit t06 t2 = false → t06 ≠ t2.
+ #t2; ncases t2; nnormalize; #H;
+ ##[ ##7: napply (bool_destruct … H)
+ ##| ##*: #H1; napply False_ind; napply (bitrigesim_destruct … H1)
+ ##]
+nqed.
+
+nlemma neqbit_to_neq8 : ∀t2.eq_bit t07 t2 = false → t07 ≠ t2.
+ #t2; ncases t2; nnormalize; #H;
+ ##[ ##8: napply (bool_destruct … H)
+ ##| ##*: #H1; napply False_ind; napply (bitrigesim_destruct … H1)
+ ##]
+nqed.
+
+nlemma neqbit_to_neq9 : ∀t2.eq_bit t08 t2 = false → t08 ≠ t2.
+ #t2; ncases t2; nnormalize; #H;
+ ##[ ##9: napply (bool_destruct … H)
+ ##| ##*: #H1; napply False_ind; napply (bitrigesim_destruct … H1)
+ ##]
+nqed.
+
+nlemma neqbit_to_neq10 : ∀t2.eq_bit t09 t2 = false → t09 ≠ t2.
+ #t2; ncases t2; nnormalize; #H;
+ ##[ ##10: napply (bool_destruct … H)
+ ##| ##*: #H1; napply False_ind; napply (bitrigesim_destruct … H1)
+ ##]
+nqed.
+
+nlemma neqbit_to_neq11 : ∀t2.eq_bit t0A t2 = false → t0A ≠ t2.
+ #t2; ncases t2; nnormalize; #H;
+ ##[ ##11: napply (bool_destruct … H)
+ ##| ##*: #H1; napply False_ind; napply (bitrigesim_destruct … H1)
+ ##]
+nqed.
+
+nlemma neqbit_to_neq12 : ∀t2.eq_bit t0B t2 = false → t0B ≠ t2.
+ #t2; ncases t2; nnormalize; #H;
+ ##[ ##12: napply (bool_destruct … H)
+ ##| ##*: #H1; napply False_ind; napply (bitrigesim_destruct … H1)
+ ##]
+nqed.
+
+nlemma neqbit_to_neq13 : ∀t2.eq_bit t0C t2 = false → t0C ≠ t2.
+ #t2; ncases t2; nnormalize; #H;
+ ##[ ##13: napply (bool_destruct … H)
+ ##| ##*: #H1; napply False_ind; napply (bitrigesim_destruct … H1)
+ ##]
+nqed.
+
+nlemma neqbit_to_neq14 : ∀t2.eq_bit t0D t2 = false → t0D ≠ t2.
+ #t2; ncases t2; nnormalize; #H;
+ ##[ ##14: napply (bool_destruct … H)
+ ##| ##*: #H1; napply False_ind; napply (bitrigesim_destruct … H1)
+ ##]
+nqed.
+
+nlemma neqbit_to_neq15 : ∀t2.eq_bit t0E t2 = false → t0E ≠ t2.
+ #t2; ncases t2; nnormalize; #H;
+ ##[ ##15: napply (bool_destruct … H)
+ ##| ##*: #H1; napply False_ind; napply (bitrigesim_destruct … H1)
+ ##]
+nqed.
+
+nlemma neqbit_to_neq16 : ∀t2.eq_bit t0F t2 = false → t0F ≠ t2.
+ #t2; ncases t2; nnormalize; #H;
+ ##[ ##16: napply (bool_destruct … H)
+ ##| ##*: #H1; napply False_ind; napply (bitrigesim_destruct … H1)
+ ##]
+nqed.
+
+nlemma neqbit_to_neq17 : ∀t2.eq_bit t10 t2 = false → t10 ≠ t2.
+ #t2; ncases t2; nnormalize; #H;
+ ##[ ##17: napply (bool_destruct … H)
+ ##| ##*: #H1; napply False_ind; napply (bitrigesim_destruct … H1)
+ ##]
+nqed.
+
+nlemma neqbit_to_neq18 : ∀t2.eq_bit t11 t2 = false → t11 ≠ t2.
+ #t2; ncases t2; nnormalize; #H;
+ ##[ ##18: napply (bool_destruct … H)
+ ##| ##*: #H1; napply False_ind; napply (bitrigesim_destruct … H1)
+ ##]
+nqed.
+
+nlemma neqbit_to_neq19 : ∀t2.eq_bit t12 t2 = false → t12 ≠ t2.
+ #t2; ncases t2; nnormalize; #H;
+ ##[ ##19: napply (bool_destruct … H)
+ ##| ##*: #H1; napply False_ind; napply (bitrigesim_destruct … H1)
+ ##]
+nqed.
+
+nlemma neqbit_to_neq20 : ∀t2.eq_bit t13 t2 = false → t13 ≠ t2.
+ #t2; ncases t2; nnormalize; #H;
+ ##[ ##20: napply (bool_destruct … H)
+ ##| ##*: #H1; napply False_ind; napply (bitrigesim_destruct … H1)
+ ##]
+nqed.
+
+nlemma neqbit_to_neq21 : ∀t2.eq_bit t14 t2 = false → t14 ≠ t2.
+ #t2; ncases t2; nnormalize; #H;
+ ##[ ##21: napply (bool_destruct … H)
+ ##| ##*: #H1; napply False_ind; napply (bitrigesim_destruct … H1)
+ ##]
+nqed.
+
+nlemma neqbit_to_neq22 : ∀t2.eq_bit t15 t2 = false → t15 ≠ t2.
+ #t2; ncases t2; nnormalize; #H;
+ ##[ ##22: napply (bool_destruct … H)
+ ##| ##*: #H1; napply False_ind; napply (bitrigesim_destruct … H1)
+ ##]
+nqed.
+
+nlemma neqbit_to_neq23 : ∀t2.eq_bit t16 t2 = false → t16 ≠ t2.
+ #t2; ncases t2; nnormalize; #H;
+ ##[ ##23: napply (bool_destruct … H)
+ ##| ##*: #H1; napply False_ind; napply (bitrigesim_destruct … H1)
+ ##]
+nqed.
+
+nlemma neqbit_to_neq24 : ∀t2.eq_bit t17 t2 = false → t17 ≠ t2.
+ #t2; ncases t2; nnormalize; #H;
+ ##[ ##24: napply (bool_destruct … H)
+ ##| ##*: #H1; napply False_ind; napply (bitrigesim_destruct … H1)
+ ##]
+nqed.
+
+nlemma neqbit_to_neq25 : ∀t2.eq_bit t18 t2 = false → t18 ≠ t2.
+ #t2; ncases t2; nnormalize; #H;
+ ##[ ##25: napply (bool_destruct … H)
+ ##| ##*: #H1; napply False_ind; napply (bitrigesim_destruct … H1)
+ ##]
+nqed.
+
+nlemma neqbit_to_neq26 : ∀t2.eq_bit t19 t2 = false → t19 ≠ t2.
+ #t2; ncases t2; nnormalize; #H;
+ ##[ ##26: napply (bool_destruct … H)
+ ##| ##*: #H1; napply False_ind; napply (bitrigesim_destruct … H1)
+ ##]
+nqed.
+
+nlemma neqbit_to_neq27 : ∀t2.eq_bit t1A t2 = false → t1A ≠ t2.
+ #t2; ncases t2; nnormalize; #H;
+ ##[ ##27: napply (bool_destruct … H)
+ ##| ##*: #H1; napply False_ind; napply (bitrigesim_destruct … H1)
+ ##]
+nqed.
+
+nlemma neqbit_to_neq28 : ∀t2.eq_bit t1B t2 = false → t1B ≠ t2.
+ #t2; ncases t2; nnormalize; #H;
+ ##[ ##28: napply (bool_destruct … H)
+ ##| ##*: #H1; napply False_ind; napply (bitrigesim_destruct … H1)
+ ##]
+nqed.
+
+nlemma neqbit_to_neq29 : ∀t2.eq_bit t1C t2 = false → t1C ≠ t2.
+ #t2; ncases t2; nnormalize; #H;
+ ##[ ##29: napply (bool_destruct … H)
+ ##| ##*: #H1; napply False_ind; napply (bitrigesim_destruct … H1)
+ ##]
+nqed.
+
+nlemma neqbit_to_neq30 : ∀t2.eq_bit t1D t2 = false → t1D ≠ t2.
+ #t2; ncases t2; nnormalize; #H;
+ ##[ ##30: napply (bool_destruct … H)
+ ##| ##*: #H1; napply False_ind; napply (bitrigesim_destruct … H1)
+ ##]
+nqed.
+
+nlemma neqbit_to_neq31 : ∀t2.eq_bit t1E t2 = false → t1E ≠ t2.
+ #t2; ncases t2; nnormalize; #H;
+ ##[ ##31: napply (bool_destruct … H)
+ ##| ##*: #H1; napply False_ind; napply (bitrigesim_destruct … H1)
+ ##]
+nqed.
+
+nlemma neqbit_to_neq32 : ∀t2.eq_bit t1F t2 = false → t1F ≠ t2.
+ #t2; ncases t2; nnormalize; #H;
+ ##[ ##32: napply (bool_destruct … H)
+ ##| ##*: #H1; napply False_ind; napply (bitrigesim_destruct … H1)
+ ##]
+nqed.
+
+nlemma neqbit_to_neq : ∀t1,t2.eq_bit t1 t2 = false → t1 ≠ t2.
+ #t1; nelim t1;
+ ##[ ##1: napply neqbit_to_neq1
+ ##| ##2: napply neqbit_to_neq2
+ ##| ##3: napply neqbit_to_neq3
+ ##| ##4: napply neqbit_to_neq4
+ ##| ##5: napply neqbit_to_neq5
+ ##| ##6: napply neqbit_to_neq6
+ ##| ##7: napply neqbit_to_neq7
+ ##| ##8: napply neqbit_to_neq8
+ ##| ##9: napply neqbit_to_neq9
+ ##| ##10: napply neqbit_to_neq10
+ ##| ##11: napply neqbit_to_neq11
+ ##| ##12: napply neqbit_to_neq12
+ ##| ##13: napply neqbit_to_neq13
+ ##| ##14: napply neqbit_to_neq14
+ ##| ##15: napply neqbit_to_neq15
+ ##| ##16: napply neqbit_to_neq16
+ ##| ##17: napply neqbit_to_neq17
+ ##| ##18: napply neqbit_to_neq18
+ ##| ##19: napply neqbit_to_neq19
+ ##| ##20: napply neqbit_to_neq20
+ ##| ##21: napply neqbit_to_neq21
+ ##| ##22: napply neqbit_to_neq22
+ ##| ##23: napply neqbit_to_neq23
+ ##| ##24: napply neqbit_to_neq24
+ ##| ##25: napply neqbit_to_neq25
+ ##| ##26: napply neqbit_to_neq26
+ ##| ##27: napply neqbit_to_neq27
+ ##| ##28: napply neqbit_to_neq28
+ ##| ##29: napply neqbit_to_neq29
+ ##| ##30: napply neqbit_to_neq30
+ ##| ##31: napply neqbit_to_neq31
+ ##| ##32: napply neqbit_to_neq32
+ ##]
+nqed.
+
+nlemma neq_to_neqbit1 : ∀t2.t00 ≠ t2 → eq_bit t00 t2 = false.
+ #t2; ncases t2; nnormalize; #H; ##[ ##1: nelim (H (refl_eq …)) ##| ##*: napply refl_eq ##]
+nqed.
+
+nlemma neq_to_neqbit2 : ∀t2.t01 ≠ t2 → eq_bit t01 t2 = false.
+ #t2; ncases t2; nnormalize; #H; ##[ ##2: nelim (H (refl_eq …)) ##| ##*: napply refl_eq ##]
+nqed.
+
+nlemma neq_to_neqbit3 : ∀t2.t02 ≠ t2 → eq_bit t02 t2 = false.
+ #t2; ncases t2; nnormalize; #H; ##[ ##3: nelim (H (refl_eq …)) ##| ##*: napply refl_eq ##]
+nqed.
+
+nlemma neq_to_neqbit4 : ∀t2.t03 ≠ t2 → eq_bit t03 t2 = false.
+ #t2; ncases t2; nnormalize; #H; ##[ ##4: nelim (H (refl_eq …)) ##| ##*: napply refl_eq ##]
+nqed.
+
+nlemma neq_to_neqbit5 : ∀t2.t04 ≠ t2 → eq_bit t04 t2 = false.
+ #t2; ncases t2; nnormalize; #H; ##[ ##5: nelim (H (refl_eq …)) ##| ##*: napply refl_eq ##]
+nqed.
+
+nlemma neq_to_neqbit6 : ∀t2.t05 ≠ t2 → eq_bit t05 t2 = false.
+ #t2; ncases t2; nnormalize; #H; ##[ ##6: nelim (H (refl_eq …)) ##| ##*: napply refl_eq ##]
+nqed.
+
+nlemma neq_to_neqbit7 : ∀t2.t06 ≠ t2 → eq_bit t06 t2 = false.
+ #t2; ncases t2; nnormalize; #H; ##[ ##7: nelim (H (refl_eq …)) ##| ##*: napply refl_eq ##]
+nqed.
+
+nlemma neq_to_neqbit8 : ∀t2.t07 ≠ t2 → eq_bit t07 t2 = false.
+ #t2; ncases t2; nnormalize; #H; ##[ ##8: nelim (H (refl_eq …)) ##| ##*: napply refl_eq ##]
+nqed.
+
+nlemma neq_to_neqbit9 : ∀t2.t08 ≠ t2 → eq_bit t08 t2 = false.
+ #t2; ncases t2; nnormalize; #H; ##[ ##9: nelim (H (refl_eq …)) ##| ##*: napply refl_eq ##]
+nqed.
+
+nlemma neq_to_neqbit10 : ∀t2.t09 ≠ t2 → eq_bit t09 t2 = false.
+ #t2; ncases t2; nnormalize; #H; ##[ ##10: nelim (H (refl_eq …)) ##| ##*: napply refl_eq ##]
+nqed.
+
+nlemma neq_to_neqbit11 : ∀t2.t0A ≠ t2 → eq_bit t0A t2 = false.
+ #t2; ncases t2; nnormalize; #H; ##[ ##11: nelim (H (refl_eq …)) ##| ##*: napply refl_eq ##]
+nqed.
+
+nlemma neq_to_neqbit12 : ∀t2.t0B ≠ t2 → eq_bit t0B t2 = false.
+ #t2; ncases t2; nnormalize; #H; ##[ ##12: nelim (H (refl_eq …)) ##| ##*: napply refl_eq ##]
+nqed.
+
+nlemma neq_to_neqbit13 : ∀t2.t0C ≠ t2 → eq_bit t0C t2 = false.
+ #t2; ncases t2; nnormalize; #H; ##[ ##13: nelim (H (refl_eq …)) ##| ##*: napply refl_eq ##]
+nqed.
+
+nlemma neq_to_neqbit14 : ∀t2.t0D ≠ t2 → eq_bit t0D t2 = false.
+ #t2; ncases t2; nnormalize; #H; ##[ ##14: nelim (H (refl_eq …)) ##| ##*: napply refl_eq ##]
+nqed.
+
+nlemma neq_to_neqbit15 : ∀t2.t0E ≠ t2 → eq_bit t0E t2 = false.
+ #t2; ncases t2; nnormalize; #H; ##[ ##15: nelim (H (refl_eq …)) ##| ##*: napply refl_eq ##]
+nqed.
+
+nlemma neq_to_neqbit16 : ∀t2.t0F ≠ t2 → eq_bit t0F t2 = false.
+ #t2; ncases t2; nnormalize; #H; ##[ ##16: nelim (H (refl_eq …)) ##| ##*: napply refl_eq ##]
+nqed.
+
+nlemma neq_to_neqbit17 : ∀t2.t10 ≠ t2 → eq_bit t10 t2 = false.
+ #t2; ncases t2; nnormalize; #H; ##[ ##17: nelim (H (refl_eq …)) ##| ##*: napply refl_eq ##]
+nqed.
+
+nlemma neq_to_neqbit18 : ∀t2.t11 ≠ t2 → eq_bit t11 t2 = false.
+ #t2; ncases t2; nnormalize; #H; ##[ ##18: nelim (H (refl_eq …)) ##| ##*: napply refl_eq ##]
+nqed.
+
+nlemma neq_to_neqbit19 : ∀t2.t12 ≠ t2 → eq_bit t12 t2 = false.
+ #t2; ncases t2; nnormalize; #H; ##[ ##19: nelim (H (refl_eq …)) ##| ##*: napply refl_eq ##]
+nqed.
+
+nlemma neq_to_neqbit20 : ∀t2.t13 ≠ t2 → eq_bit t13 t2 = false.
+ #t2; ncases t2; nnormalize; #H; ##[ ##20: nelim (H (refl_eq …)) ##| ##*: napply refl_eq ##]
+nqed.
+
+nlemma neq_to_neqbit21 : ∀t2.t14 ≠ t2 → eq_bit t14 t2 = false.
+ #t2; ncases t2; nnormalize; #H; ##[ ##21: nelim (H (refl_eq …)) ##| ##*: napply refl_eq ##]
+nqed.
+
+nlemma neq_to_neqbit22 : ∀t2.t15 ≠ t2 → eq_bit t15 t2 = false.
+ #t2; ncases t2; nnormalize; #H; ##[ ##22: nelim (H (refl_eq …)) ##| ##*: napply refl_eq ##]
+nqed.
+
+nlemma neq_to_neqbit23 : ∀t2.t16 ≠ t2 → eq_bit t16 t2 = false.
+ #t2; ncases t2; nnormalize; #H; ##[ ##23: nelim (H (refl_eq …)) ##| ##*: napply refl_eq ##]
+nqed.
+
+nlemma neq_to_neqbit24 : ∀t2.t17 ≠ t2 → eq_bit t17 t2 = false.
+ #t2; ncases t2; nnormalize; #H; ##[ ##24: nelim (H (refl_eq …)) ##| ##*: napply refl_eq ##]
+nqed.
+
+nlemma neq_to_neqbit25 : ∀t2.t18 ≠ t2 → eq_bit t18 t2 = false.
+ #t2; ncases t2; nnormalize; #H; ##[ ##25: nelim (H (refl_eq …)) ##| ##*: napply refl_eq ##]
+nqed.
+
+nlemma neq_to_neqbit26 : ∀t2.t19 ≠ t2 → eq_bit t19 t2 = false.
+ #t2; ncases t2; nnormalize; #H; ##[ ##26: nelim (H (refl_eq …)) ##| ##*: napply refl_eq ##]
+nqed.
+
+nlemma neq_to_neqbit27 : ∀t2.t1A ≠ t2 → eq_bit t1A t2 = false.
+ #t2; ncases t2; nnormalize; #H; ##[ ##27: nelim (H (refl_eq …)) ##| ##*: napply refl_eq ##]
+nqed.
+
+nlemma neq_to_neqbit28 : ∀t2.t1B ≠ t2 → eq_bit t1B t2 = false.
+ #t2; ncases t2; nnormalize; #H; ##[ ##28: nelim (H (refl_eq …)) ##| ##*: napply refl_eq ##]
+nqed.
+
+nlemma neq_to_neqbit29 : ∀t2.t1C ≠ t2 → eq_bit t1C t2 = false.
+ #t2; ncases t2; nnormalize; #H; ##[ ##29: nelim (H (refl_eq …)) ##| ##*: napply refl_eq ##]
+nqed.
+
+nlemma neq_to_neqbit30 : ∀t2.t1D ≠ t2 → eq_bit t1D t2 = false.
+ #t2; ncases t2; nnormalize; #H; ##[ ##30: nelim (H (refl_eq …)) ##| ##*: napply refl_eq ##]
+nqed.
+
+nlemma neq_to_neqbit31 : ∀t2.t1E ≠ t2 → eq_bit t1E t2 = false.
+ #t2; ncases t2; nnormalize; #H; ##[ ##31: nelim (H (refl_eq …)) ##| ##*: napply refl_eq ##]
+nqed.
+
+nlemma neq_to_neqbit32 : ∀t2.t1F ≠ t2 → eq_bit t1F t2 = false.
+ #t2; ncases t2; nnormalize; #H; ##[ ##32: nelim (H (refl_eq …)) ##| ##*: napply refl_eq ##]
+nqed.
+
+nlemma neq_to_neqbit : ∀t1,t2.t1 ≠ t2 → eq_bit t1 t2 = false.
+ #t1; nelim t1;
+ ##[ ##1: napply neq_to_neqbit1
+ ##| ##2: napply neq_to_neqbit2
+ ##| ##3: napply neq_to_neqbit3
+ ##| ##4: napply neq_to_neqbit4
+ ##| ##5: napply neq_to_neqbit5
+ ##| ##6: napply neq_to_neqbit6
+ ##| ##7: napply neq_to_neqbit7
+ ##| ##8: napply neq_to_neqbit8
+ ##| ##9: napply neq_to_neqbit9
+ ##| ##10: napply neq_to_neqbit10
+ ##| ##11: napply neq_to_neqbit11
+ ##| ##12: napply neq_to_neqbit12
+ ##| ##13: napply neq_to_neqbit13
+ ##| ##14: napply neq_to_neqbit14
+ ##| ##15: napply neq_to_neqbit15
+ ##| ##16: napply neq_to_neqbit16
+ ##| ##17: napply neq_to_neqbit17
+ ##| ##18: napply neq_to_neqbit18
+ ##| ##19: napply neq_to_neqbit19
+ ##| ##20: napply neq_to_neqbit20
+ ##| ##21: napply neq_to_neqbit21
+ ##| ##22: napply neq_to_neqbit22
+ ##| ##23: napply neq_to_neqbit23
+ ##| ##24: napply neq_to_neqbit24
+ ##| ##25: napply neq_to_neqbit25
+ ##| ##26: napply neq_to_neqbit26
+ ##| ##27: napply neq_to_neqbit27
+ ##| ##28: napply neq_to_neqbit28
+ ##| ##29: napply neq_to_neqbit29
+ ##| ##30: napply neq_to_neqbit30
+ ##| ##31: napply neq_to_neqbit31
+ ##| ##32: napply neq_to_neqbit32
+ ##]
+nqed.