--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+include "logic/cprop_connectives.ma".
+
+record iff (A,B: CProp) : CProp ≝
+ { if: A → B;
+ fi: B → A
+ }.
+
+notation > "hvbox(a break \liff b)"
+ left associative with precedence 25
+for @{ 'iff $a $b }.
+
+notation "hvbox(a break \leftrightarrow b)"
+ left associative with precedence 25
+for @{ 'iff $a $b }.
+
+interpretation "logical iff" 'iff x y = (iff x y).
+
+record setoid : Type ≝
+ { carr:> Type;
+ eq: carr → carr → CProp;
+ refl: reflexive ? eq;
+ sym: symmetric ? eq;
+ trans: transitive ? eq
+ }.
+
+definition proofs: CProp → setoid.
+ intro;
+ constructor 1;
+ [ apply A
+ | intros;
+ alias id "True" = "cic:/Coq/Init/Logic/True.ind#xpointer(1/1)".
+ apply True
+ | intro;
+ constructor 1
+ | intros 3;
+ constructor 1
+ | intros 5;
+ constructor 1]
+qed.
+
+record setoid1 : Type ≝
+ { carr1:> Type;
+ eq1: carr1 → carr1 → CProp;
+ refl1: reflexive ? eq1;
+ sym1: symmetric ? eq1;
+ trans1: transitive ? eq1
+ }.
+
+definition CCProp: setoid1.
+ constructor 1;
+ [ apply CProp
+ | apply iff
+ | intro;
+ split;
+ intro;
+ assumption
+ | intros 3;
+ cases H; clear H;
+ split;
+ assumption
+ | intros 5;
+ cases H; cases H1; clear H H1;
+ split;
+ intros;
+ [ apply (H4 (H2 H))
+ | apply (H3 (H5 H))]]
+qed.
+
+record function_space (A,B: setoid): Type ≝
+ { f:1> A → B;
+ f_ok: ∀a,a':A. eq ? a a' → eq ? (f a) (f a')
+ }.
+
+notation "hbox(a break ⇒ b)" right associative with precedence 20 for @{ 'Imply $a $b }.
+interpretation "function_space" 'Imply a b = (function_space a b).
+
+record function_space1 (A: setoid) (B: setoid1): Type ≝
+ { f1:1> A → B;
+ f1_ok: ∀a,a':A. eq ? a a' → eq1 ? (f1 a) (f1 a')
+ }.
+
+definition function_space_setoid: setoid → setoid → setoid.
+ intros (A B);
+ constructor 1;
+ [ apply (A ⇒ B);
+ | intros;
+ apply (∀a:A. eq ? (f a) (f1 a));
+ | simplify;
+ intros;
+ apply (f_ok ? ? x);
+ apply (refl A)
+ | simplify;
+ intros;
+ apply (sym B);
+ apply (H a)
+ | simplify;
+ intros;
+ apply (trans B ? (y a));
+ [ apply (H a)
+ | apply (H1 a)]]
+qed.
+
+interpretation "function_space_setoid" 'Imply a b = (function_space_setoid a b).
+
+record isomorphism (A,B: setoid): Type ≝
+ { map1:> A ⇒ B;
+ map2:> B ⇒ A;
+ inv1: ∀a:A. eq ? (map2 (map1 a)) a;
+ inv2: ∀b:B. eq ? (map1 (map2 b)) b
+ }.
+
+interpretation "isomorphism" 'iff x y = (isomorphism x y).
+
+axiom daemon: False.
+
+definition setoids: setoid1.
+ constructor 1;
+ [ apply setoid;
+ | apply isomorphism;
+ | intro;
+ split;
+ [1,2: constructor 1;
+ [1,3: intro; assumption;
+ |*: intros; assumption]
+ |3,4:
+ intros;
+ simplify;
+ apply refl;]
+ |*: elim daemon]
+qed.
+
+record dependent_product (A:setoid) (B: function_space1 A setoids): Type ≝
+ { dp:> ∀a:A.carr (B a);
+ dp_ok: ∀a,a':A. ∀p:eq ? a a'. eq ? (dp a) (map2 ?? (f1_ok ?? B ?? p) (dp a'))
+ }.
+
+record forall (A:setoid) (B: function_space1 A CCProp): Type ≝
+ { fo:> ∀a:A.proofs (B a)
+ }.
+
+record subset (A: setoid) : Type ≝
+ { mem: function_space1 A CCProp
+ }.
+
+definition subset_eq ≝ λA:setoid.λU,V: subset A. ∀a:A. mem ? U a \liff mem ? V a.
+
+lemma mem_ok:
+ ∀A:setoid.∀a,a':A.∀U,V: subset A.
+ eq ? a a' → subset_eq ? U V → mem ? U a \liff mem ? V a'.
+ intros;
+ cases (H1 a);
+ split; intro H4;
+ [ lapply (H2 H4); clear H2 H3 H4;
+ apply (if ?? (f1_ok ?? (mem ? V) ?? H));
+ assumption
+ | apply H3; clear H2 H3;
+ apply (fi ?? (f1_ok ?? (mem ? V) ?? H));
+ apply H4;]
+qed.
+