match l with
[ label_node_d n ⇒
match q with
- [ list_empty ⇒ lift_gen (A) (λp. k (𝗱❨f@❨n❩❩◗p)) q f
+ [ list_empty ⇒ lift_gen (A) (λp. k (𝗱❨f@❨n❩❩◗p)) q (f∘𝐮❨n❩)
| list_lcons _ _ ⇒ lift_gen (A) k q (f∘𝐮❨n❩)
]
| label_edge_L ⇒ lift_gen (A) (λp. k (𝗟◗p)) q (⫯f)
// qed.
lemma lift_d_empty_sn (A) (k) (n) (f):
- ↑❨(λp. k (𝗱❨f@❨n❩❩◗p)), 𝐞, f❩ = ↑{A}❨k, 𝗱❨n❩◗𝐞, f❩.
+ â\86\91â\9d¨(λp. k (ð\9d\97±â\9d¨f@â\9d¨nâ\9d©â\9d©â\97\97p)), ð\9d\90\9e, fâ\88\98ð\9d\90®â\9d¨ninj nâ\9d©â\9d© = â\86\91{A}â\9d¨k, ð\9d\97±â\9d¨nâ\9d©â\97\97ð\9d\90\9e, fâ\9d©.
// qed.
lemma lift_d_lcons_sn (A) (k) (p) (l) (n) (f):
(* Basic constructions with proj_rmap ***************************************)
-lemma lift_rmap_d_empty_sn (f) (n):
- f = ↑[𝗱❨n❩◗𝐞]f.
-// qed.
-
-lemma lift_rmap_d_lcons_sn (f) (p) (l) (n):
- ↑[l◗p](f∘𝐮❨ninj n❩) = ↑[𝗱❨n❩◗l◗p]f.
-// qed.
+lemma lift_rmap_d_sn (f) (p) (n):
+ ↑[p](f∘𝐮❨ninj n❩) = ↑[𝗱❨n❩◗p]f.
+#f * // qed.
lemma lift_rmap_L_sn (f) (p):
↑[p](⫯f) = ↑[𝗟◗p]f.
↑[p]f = ↑[𝗦◗p]f.
// qed.
+(* Advanced constructions with proj_rmap and path_append ********************)
+
+lemma lift_rmap_append (p2) (p1) (f):
+ ↑[p2]↑[p1]f = ↑[p1●p2]f.
+#p2 #p1 elim p1 -p1 // * [ #n ] #p1 #IH #f //
+[ <lift_rmap_A_sn <lift_rmap_A_sn //
+| <lift_rmap_S_sn <lift_rmap_S_sn //
+]
+qed.
+
(* Advanced eliminations with path ******************************************)
lemma path_ind_lift (Q:predicate …):
(* Constructions with structure ********************************************)
lemma lift_d_empty_dx (n) (p) (f):
- (⊗p)◖𝗱❨(↑[p◖𝗱❨n❩]f)@❨n❩❩ = ↑[f](p◖𝗱❨n❩).
+ (⊗p)◖𝗱❨(↑[p]f)@❨n❩❩ = ↑[f](p◖𝗱❨n❩).
#n #p @(path_ind_lift … p) -p // [ #m #l #p |*: #p ] #IH #f
-[ <lift_rmap_d_lcons_sn <lift_path_d_lcons_sn //
+[ <lift_rmap_d_sn <lift_path_d_lcons_sn //
| <lift_rmap_L_sn <lift_path_L_sn <IH //
| <lift_rmap_A_sn <lift_path_A_sn <IH //
| <lift_rmap_S_sn <lift_path_S_sn <IH //