intro;
unfold transitive in H;
unfold symmetric in sym;
- auto.
+ auto depth=4.
]
qed.
+(*
definition equality_morphism_of_asymmetric_areflexive_transitive_relation:
∀(A: Type)(Aeq: relation A)(trans: transitive ? Aeq).
let ASetoidClass1 := AsymmetricAreflexive Contravariant Aeq in
(Morphism_Theory (cons ASetoidClass1 (singl ASetoidClass2)) Impl_Relation_Class).
intros.
exists Aeq.
- unfold make_compatibility_goal; simpl; unfold impl; eauto.
+ unfold make_compatibility_goal; simpl; unfold impl; auto.
qed.
definition equality_morphism_of_asymmetric_reflexive_transitive_relation:
definition gen_st : ∀A : Set. Setoid_Theory ? (@eq A).
Proof. constructor; congruence. Qed.
+*)
\ No newline at end of file