--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| A.Asperti, C.Sacerdoti Coen, *)
+(* ||A|| E.Tassi, S.Zacchiroli *)
+(* \ / *)
+(* \ / Matita is distributed under the terms of the *)
+(* v GNU Lesser General Public License Version 2.1 *)
+(* *)
+(**************************************************************************)
+
+set "baseuri" "cic:/matita/Z/moebius".
+
+include "nat/factorization.ma".
+include "Z/sigma_p.ma".
+
+let rec moebius_aux p n : Z \def
+ match p with
+ [ O \Rightarrow pos O
+ | (S p1) \Rightarrow
+ match p_ord n (nth_prime p1) with
+ [ (pair q r) \Rightarrow
+ match q with
+ [ O \Rightarrow moebius_aux p1 r
+ | (S q1) \Rightarrow
+ match q1 with
+ [ O \Rightarrow Zopp (moebius_aux p1 r)
+ | (S q2) \Rightarrow OZ
+ ]
+ ]
+ ]
+ ]
+.
+
+definition moebius : nat \to Z \def
+\lambda n.
+ let p \def (max n (\lambda p:nat.eqb (n \mod (nth_prime p)) O)) in
+ moebius_aux (S p) n.
+
+theorem moebius_O : moebius O = pos O.
+simplify. reflexivity.
+qed.
+
+theorem moebius_SO : moebius (S O) = pos O.
+simplify.reflexivity.
+qed.
+
+theorem moebius_SSO : moebius (S (S O)) = neg O.
+simplify.reflexivity.
+qed.
+
+theorem moebius_SSSO : moebius (S (S (S O))) = neg O.
+simplify.reflexivity.
+qed.
+
+
+theorem not_divides_to_p_ord_O: \forall n,i.
+Not (divides (nth_prime i) n) \to p_ord n (nth_prime i) =
+pair nat nat O n.
+intros.
+apply p_ord_exp1
+ [apply lt_O_nth_prime_n
+ |assumption
+ |auto
+ ]
+qed.
+
+theorem p_ord_O_to_not_divides: \forall n,i,r.
+O < n \to
+p_ord n (nth_prime i) = pair nat nat O r
+\to Not (divides (nth_prime i) n).
+intros.
+lapply (p_ord_to_exp1 ? ? ? ? ? ? H1)
+ [apply lt_SO_nth_prime_n
+ |assumption
+ |elim Hletin.
+ simplify in H3.
+ rewrite > H3.
+ rewrite < plus_n_O.
+ assumption
+ ]
+qed.
+
+theorem not_divides_to_eq_moebius_aux: \forall n,p,p1.p \le p1 \to
+(\forall i. p \le i \to i \le p1 \to Not (divides (nth_prime i) n))
+\to moebius_aux p n = moebius_aux p1 n.
+intros 4.
+elim H
+ [reflexivity
+ |simplify.
+ rewrite > not_divides_to_p_ord_O
+ [simplify.apply H2.intros.
+ apply H3[assumption|apply le_S.assumption]
+ |apply H3[assumption|apply le_n_Sn]
+ ]
+ ]
+qed.
+
+theorem eq_moebius_moebius_aux: \forall n,p.
+max_prime_factor n < p \to p \le n \to
+moebius n = moebius_aux p n.
+intros.
+unfold moebius.
+change with
+(moebius_aux (S (max n (\lambda p:nat.eqb (n\mod nth_prime p) O))) n
+= moebius_aux p n).
+apply not_divides_to_eq_moebius_aux
+ [assumption
+ |intros.
+ apply divides_b_false_to_not_divides.
+ unfold divides_b.
+ apply (lt_max_to_false ? n i)
+ [assumption
+ |apply (trans_le ? p)[assumption|assumption]
+ ]
+ ]
+qed.
+
+theorem moebius_aux_SO: \forall p.moebius_aux p (S O) = pos O.
+intros.
+elim p
+ [simplify.reflexivity
+ |rewrite < H.
+ apply sym_eq.
+ apply not_divides_to_eq_moebius_aux
+ [apply le_n_Sn
+ |intros.unfold.intro.
+ absurd (nth_prime i \le S O)
+ [apply divides_to_le
+ [apply le_n|assumption]
+ |apply lt_to_not_le.
+ apply lt_SO_nth_prime_n.
+ ]
+ ]
+ ]
+qed.
+
+theorem p_ord_to_not_eq_O : \forall n,p,q,r.
+ (S O) < n \to
+ p_ord n (nth_prime p) = pair nat nat q r \to
+ Not (r=O).
+intros.
+unfold.intro.
+cut (O < n)
+ [lapply (p_ord_to_exp1 ? ? ? ? ? ? H1)
+ [apply lt_SO_nth_prime_n.
+ |assumption
+ |elim Hletin.
+ apply (lt_to_not_eq ? ? Hcut).
+ rewrite > H4.
+ rewrite > H2.
+ apply times_n_O
+ ]
+ |apply (trans_lt ? (S O))[apply lt_O_S|assumption]
+ ]
+qed.
+
+theorem max_prime_factor_to_not_p_ord_O : \forall n,p,r.
+ (S O) < n \to
+ p = max_prime_factor n \to
+ p_ord n (nth_prime p) \neq pair nat nat O r.
+intros.unfold Not.intro.
+apply (p_ord_O_to_not_divides ? ? ? ? H2)
+ [apply (trans_lt ? (S O))[apply lt_O_S|assumption]
+ |rewrite > H1.
+ apply divides_max_prime_factor_n.
+ assumption
+ ]
+qed.
+
+theorem p_ord_SO_SO_to_moebius : \forall n,p.
+ (S O) < n \to
+ p = max_prime_factor n \to
+ p_ord n (nth_prime p) = pair nat nat (S O) (S O) \to
+ moebius n = Zopp (pos O).
+intros.
+change with
+ (moebius_aux (S (max_prime_factor n)) n = neg O).
+rewrite < H1.simplify.
+rewrite > H2.simplify.
+rewrite > moebius_aux_SO.
+reflexivity.
+qed.
+
+theorem p_ord_SO_r_to_moebius1 : \forall n,p,r.
+ (S O) < n \to
+ p = max_prime_factor n \to
+ (S O) < r \to
+ p_ord n (nth_prime p) = pair nat nat (S O) r \to
+ moebius n = Zopp (moebius r).
+intros.
+change with
+ (moebius_aux (S (max_prime_factor n)) n = -(moebius r)).
+rewrite < H1.simplify.
+rewrite > H3.simplify.
+apply eq_f.
+apply sym_eq.
+change with
+ (moebius_aux (S (max_prime_factor r)) r = moebius_aux p r).
+apply not_divides_to_eq_moebius_aux
+ [apply (p_ord_to_lt_max_prime_factor n p (S O) ? ? H1)
+ [apply (trans_lt ? (S O))[apply lt_O_S|assumption]
+ |apply sym_eq. assumption
+ |assumption
+ ]
+ |intros.
+ lapply (decidable_le i r).
+ elim Hletin
+ [apply divides_b_false_to_not_divides.
+ apply (lt_max_to_false ? r i)[assumption|assumption]
+ |unfold.intro.apply H6.
+ apply (trans_le ? (nth_prime i))
+ [apply lt_to_le.
+ apply lt_n_nth_prime_n
+ |apply divides_to_le
+ [apply (trans_lt ? (S O))[apply lt_O_S|assumption]
+ |assumption
+ ]
+ ]
+ ]
+ ]
+qed.
+
+theorem p_ord_SO_r_to_moebius : \forall n,p,r.
+ (S O) < n \to
+ p = max_prime_factor n \to
+ p_ord n (nth_prime p) = pair nat nat (S O) r \to
+ moebius n = Zopp (moebius r).
+intros 5.
+apply (nat_case r);intro
+ [apply False_ind.
+ apply (p_ord_to_not_eq_O ? ? ? ? H H2).
+ reflexivity
+ |apply (nat_case m);intros
+ [simplify.apply (p_ord_SO_SO_to_moebius ? ? H H1 H2)
+ |apply (p_ord_SO_r_to_moebius1 ? ? ? H H1 ? H2).
+ apply le_S_S.apply le_S_S.apply le_O_n
+ ]
+ ]
+qed.
+
+theorem p_ord_SSq_r_to_moebius : \forall n,p,q,r.
+ (S O) < n \to
+ p = max_prime_factor n \to
+ p_ord n (nth_prime p) = pair nat nat (S (S q)) r \to
+ moebius n = OZ.
+intros.
+change with
+ (moebius_aux (S (max n (\lambda p:nat.eqb (n\mod nth_prime p) O))) n =OZ).
+rewrite < H1.simplify.
+rewrite > H2.simplify.
+reflexivity.
+qed.
+
+lemma eq_p_max: \forall n,p,r:nat. O < n \to
+O < r \to
+r = (S O) \lor (max r (\lambda p:nat.eqb (r \mod (nth_prime p)) O)) < p \to
+p = max_prime_factor (r*(nth_prime p)\sup n).
+intros.
+apply sym_eq.
+unfold max_prime_factor.
+apply max_spec_to_max.
+split
+ [split
+ [rewrite > times_n_SO in \vdash (? % ?).
+ rewrite > sym_times.
+ apply le_times
+ [assumption
+ |apply lt_to_le.
+ apply (lt_to_le_to_lt ? (nth_prime p))
+ [apply lt_n_nth_prime_n
+ |rewrite > exp_n_SO in \vdash (? % ?).
+ apply le_exp
+ [apply lt_O_nth_prime_n
+ |assumption
+ ]
+ ]
+ ]
+ |apply eq_to_eqb_true.
+ apply divides_to_mod_O
+ [apply lt_O_nth_prime_n
+ |apply (lt_O_n_elim ? H).
+ intro.
+ apply (witness ? ? (r*(nth_prime p \sup m))).
+ rewrite < assoc_times.
+ rewrite < sym_times in \vdash (? ? ? (? % ?)).
+ rewrite > exp_n_SO in \vdash (? ? ? (? (? ? %) ?)).
+ rewrite > assoc_times.
+ rewrite < exp_plus_times.
+ reflexivity
+ ]
+ ]
+ |intros.
+ apply not_eq_to_eqb_false.
+ unfold Not.intro.
+ lapply (mod_O_to_divides ? ? ? H5)
+ [apply lt_O_nth_prime_n
+ |cut (Not (divides (nth_prime i) ((nth_prime p)\sup n)))
+ [elim H2
+ [rewrite > H6 in Hletin.
+ simplify in Hletin.
+ rewrite < plus_n_O in Hletin.
+ apply Hcut.assumption
+ |elim (divides_times_to_divides ? ? ? ? Hletin)
+ [apply (lt_to_not_le ? ? H3).
+ apply lt_to_le.
+ apply (le_to_lt_to_lt ? ? ? ? H6).
+ apply f_m_to_le_max
+ [apply (trans_le ? (nth_prime i))
+ [apply lt_to_le.
+ apply lt_n_nth_prime_n
+ |apply divides_to_le[assumption|assumption]
+ ]
+ |apply eq_to_eqb_true.
+ apply divides_to_mod_O
+ [apply lt_O_nth_prime_n|assumption]
+ ]
+ |apply prime_nth_prime
+ |apply Hcut.assumption
+ ]
+ ]
+ |unfold Not.intro.
+ apply (lt_to_not_eq ? ? H3).
+ apply sym_eq.
+ elim (prime_nth_prime p).
+ apply injective_nth_prime.
+ apply H8
+ [apply (divides_exp_to_divides ? ? ? ? H6).
+ apply prime_nth_prime.
+ |apply lt_SO_nth_prime_n
+ ]
+ ]
+ ]
+ ]
+qed.
+
+lemma lt_max_prime_factor_to_not_divides: \forall n,p:nat.
+O < n \to n=S O \lor max_prime_factor n < p \to
+(nth_prime p \ndivides n).
+intros.unfold Not.intro.
+elim H1
+ [rewrite > H3 in H2.
+ apply (le_to_not_lt (nth_prime p) (S O))
+ [apply divides_to_le[apply le_n|assumption]
+ |apply lt_SO_nth_prime_n
+ ]
+ |apply (not_le_Sn_n p).
+ change with (p < p).
+ apply (le_to_lt_to_lt ? ? ? ? H3).
+ unfold max_prime_factor.
+ apply f_m_to_le_max
+ [apply (trans_le ? (nth_prime p))
+ [apply lt_to_le.
+ apply lt_n_nth_prime_n
+ |apply divides_to_le;assumption
+ ]
+ |apply eq_to_eqb_true.
+ apply divides_to_mod_O
+ [apply lt_O_nth_prime_n|assumption]
+ ]
+ ]
+qed.
+
+theorem moebius_exp: \forall p,q,r:nat. O < r \to
+r = (S O) \lor (max_prime_factor r) < p \to
+(* r = (S O) \lor (max r (\lambda p:nat.eqb (r \mod (nth_prime p)) O)) < p \to *)
+sigma_p (S (S q)) (\lambda y.true) (\lambda y.moebius (r*(exp (nth_prime p) y))) = O.
+intros.
+elim q
+ [rewrite > true_to_sigma_p_Sn
+ [rewrite > true_to_sigma_p_Sn
+ [rewrite > Zplus_z_OZ.
+ rewrite < times_n_SO.
+ rewrite > (p_ord_SO_r_to_moebius ? p r)
+ [rewrite > sym_Zplus.
+ rewrite > Zplus_Zopp.
+ reflexivity
+ |rewrite < exp_n_SO.
+ rewrite > sym_times.
+ rewrite > times_n_SO.
+ apply lt_to_le_to_lt_times
+ [apply lt_SO_nth_prime_n
+ |assumption
+ |assumption
+ ]
+ |apply eq_p_max
+ [apply le_n|assumption|assumption]
+ |apply p_ord_exp1
+ [apply lt_O_nth_prime_n
+ |apply lt_max_prime_factor_to_not_divides;assumption
+ |apply sym_times
+ ]
+ ]
+ |reflexivity
+ ]
+ |reflexivity
+ ]
+ |rewrite > true_to_sigma_p_Sn
+ [rewrite > H2.
+ rewrite > Zplus_z_OZ.
+ apply (p_ord_SSq_r_to_moebius ? p n r)
+ [rewrite > times_n_SO.
+ rewrite > sym_times in \vdash (? ? %).
+ apply lt_to_le_to_lt_times
+ [apply (trans_lt ? (nth_prime p))
+ [apply lt_SO_nth_prime_n
+ |rewrite > exp_n_SO in \vdash (? % ?).
+ apply lt_exp
+ [apply lt_SO_nth_prime_n
+ |apply le_S_S.apply le_S_S.apply le_O_n
+ ]
+ ]
+ |assumption
+ |assumption
+ ]
+ |apply eq_p_max
+ [apply le_S_S.apply le_O_n|assumption|assumption]
+ |apply p_ord_exp1
+ [apply lt_O_nth_prime_n
+ |apply lt_max_prime_factor_to_not_divides;assumption
+ |apply sym_times
+ ]
+ ]
+ |reflexivity
+ ]
+ ]
+qed.
+
+theorem sigma_p_moebius1: \forall n,m,p:nat.O < n \to O < m \to
+n = (S O) \lor max_prime_factor n < p \to
+sigma_p (S (n*(exp (nth_prime p) m))) (\lambda y.divides_b y (n*(exp (nth_prime p) m))) moebius = O.
+intros.
+rewrite > sigma_p_divides_b
+ [apply (trans_eq ? ? (sigma_p (S n) (\lambda x:nat.divides_b x n) (\lambda x:nat.OZ)))
+ [apply eq_sigma_p1
+ [intros.reflexivity
+ |apply (lt_O_n_elim m H1).
+ intros.apply moebius_exp
+ [apply (divides_b_true_to_lt_O ? ? ? H4).
+ assumption
+ |elim H2
+ [left.rewrite > H5 in H3.
+ elim (le_to_or_lt_eq ? ? (le_S_S_to_le ? ? H3))
+ [apply False_ind.
+ apply (lt_to_not_le O x)
+ [apply (divides_b_true_to_lt_O n x H H4)
+ |apply le_S_S_to_le.assumption
+ ]
+ |assumption
+ ]
+ |right.
+ apply (le_to_lt_to_lt ? ? ? ? H5).
+ apply (divides_to_max_prime_factor1 x n)
+ [apply (divides_b_true_to_lt_O ? ? H H4)
+ |assumption
+ |apply divides_b_true_to_divides.
+ assumption
+ ]
+ ]
+ ]
+ ]
+ |generalize in match (\lambda x:nat.divides_b x n).
+ intro.
+ elim n
+ [simplify.elim (f O);reflexivity
+ |apply (bool_elim ? (f (S n1)))
+ [intro.
+ rewrite > true_to_sigma_p_Sn
+ [rewrite > H3.reflexivity|assumption]
+ |intro.
+ rewrite > false_to_sigma_p_Sn
+ [apply H3|assumption]
+ ]
+ ]
+ ]
+ |assumption
+ |apply prime_nth_prime
+ |apply lt_max_prime_factor_to_not_divides;assumption
+ ]
+qed.
+
+theorem sigma_p_moebius: \forall n. (S O) < n \to
+sigma_p (S n) (\lambda y.divides_b y n) moebius = O.
+intros.
+lapply (exp_ord (nth_prime (max_prime_factor n)) n)
+ [rewrite > sym_times in Hletin.
+ rewrite > Hletin.
+ apply sigma_p_moebius1
+ [apply lt_O_ord_rem
+ [apply lt_SO_nth_prime_n
+ |apply lt_to_le.assumption
+ ]
+ |unfold lt.
+ change with
+ (fst ? ? (pair ? ? (S O) (S O)) \leq ord n (nth_prime (max_prime_factor n))).
+ rewrite < (p_ord_p (nth_prime (max_prime_factor n)))
+ [apply (divides_to_le_ord ? (nth_prime (max_prime_factor n)) n)
+ [apply lt_O_nth_prime_n
+ |apply lt_to_le.assumption
+ |apply prime_nth_prime
+ |apply divides_max_prime_factor_n.
+ assumption
+ ]
+ |apply lt_SO_nth_prime_n
+ ]
+ |lapply (lt_O_ord_rem (nth_prime (max_prime_factor n)) n)
+ [elim (le_to_or_lt_eq ? ? Hletin1)
+ [right.
+ apply (p_ord_to_lt_max_prime_factor1 n (max_prime_factor n)
+ (ord n (nth_prime (max_prime_factor n)))
+ (ord_rem n (nth_prime (max_prime_factor n))))
+ [apply lt_to_le.assumption
+ |apply le_n
+ |auto
+ |assumption
+ ]
+ |left.apply sym_eq.assumption
+ ]
+ |apply lt_SO_nth_prime_n
+ |apply lt_to_le.assumption
+ ]
+ ]
+ |apply lt_SO_nth_prime_n
+ |apply lt_to_le.assumption
+ ]
+qed.
--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| A.Asperti, C.Sacerdoti Coen, *)
+(* ||A|| E.Tassi, S.Zacchiroli *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU Lesser General Public License Version 2.1 *)
+(* *)
+(**************************************************************************)
+
+set "baseuri" "cic:/matita/Z/sigma_p.ma".
+
+include "Z/plus.ma".
+include "nat/primes.ma".
+include "nat/ord.ma".
+
+let rec sigma_p n p (g:nat \to Z) \def
+ match n with
+ [ O \Rightarrow OZ
+ | (S k) \Rightarrow
+ match p k with
+ [true \Rightarrow (g k)+(sigma_p k p g)
+ |false \Rightarrow sigma_p k p g]
+ ].
+
+theorem true_to_sigma_p_Sn:
+\forall n:nat. \forall p:nat \to bool. \forall g:nat \to Z.
+p n = true \to sigma_p (S n) p g =
+(g n)+(sigma_p n p g).
+intros.simplify.
+rewrite > H.reflexivity.
+qed.
+
+theorem false_to_sigma_p_Sn:
+\forall n:nat. \forall p:nat \to bool. \forall g:nat \to Z.
+p n = false \to sigma_p (S n) p g = sigma_p n p g.
+intros.simplify.
+rewrite > H.reflexivity.
+qed.
+
+theorem eq_sigma_p: \forall p1,p2:nat \to bool.
+\forall g1,g2: nat \to Z.\forall n.
+(\forall x. x < n \to p1 x = p2 x) \to
+(\forall x. x < n \to g1 x = g2 x) \to
+sigma_p n p1 g1 = sigma_p n p2 g2.
+intros 5.elim n
+ [reflexivity
+ |apply (bool_elim ? (p1 n1))
+ [intro.
+ rewrite > (true_to_sigma_p_Sn ? ? ? H3).
+ rewrite > true_to_sigma_p_Sn
+ [apply eq_f2
+ [apply H2.apply le_n.
+ |apply H
+ [intros.apply H1.apply le_S.assumption
+ |intros.apply H2.apply le_S.assumption
+ ]
+ ]
+ |rewrite < H3.apply sym_eq.apply H1.apply le_n
+ ]
+ |intro.
+ rewrite > (false_to_sigma_p_Sn ? ? ? H3).
+ rewrite > false_to_sigma_p_Sn
+ [apply H
+ [intros.apply H1.apply le_S.assumption
+ |intros.apply H2.apply le_S.assumption
+ ]
+ |rewrite < H3.apply sym_eq.apply H1.apply le_n
+ ]
+ ]
+ ]
+qed.
+
+theorem eq_sigma_p1: \forall p1,p2:nat \to bool.
+\forall g1,g2: nat \to Z.\forall n.
+(\forall x. x < n \to p1 x = p2 x) \to
+(\forall x. x < n \to p1 x = true \to g1 x = g2 x) \to
+sigma_p n p1 g1 = sigma_p n p2 g2.
+intros 5.
+elim n
+ [reflexivity
+ |apply (bool_elim ? (p1 n1))
+ [intro.
+ rewrite > (true_to_sigma_p_Sn ? ? ? H3).
+ rewrite > true_to_sigma_p_Sn
+ [apply eq_f2
+ [apply H2
+ [apply le_n|assumption]
+ |apply H
+ [intros.apply H1.apply le_S.assumption
+ |intros.apply H2
+ [apply le_S.assumption|assumption]
+ ]
+ ]
+ |rewrite < H3.apply sym_eq.apply H1.apply le_n
+ ]
+ |intro.
+ rewrite > (false_to_sigma_p_Sn ? ? ? H3).
+ rewrite > false_to_sigma_p_Sn
+ [apply H
+ [intros.apply H1.apply le_S.assumption
+ |intros.apply H2
+ [apply le_S.assumption|assumption]
+ ]
+ |rewrite < H3.apply sym_eq.apply H1.apply le_n
+ ]
+ ]
+ ]
+qed.
+
+theorem sigma_p_false:
+\forall g: nat \to Z.\forall n.sigma_p n (\lambda x.false) g = O.
+intros.
+elim n[reflexivity|simplify.assumption]
+qed.
+
+theorem sigma_p_plus: \forall n,k:nat.\forall p:nat \to bool.
+\forall g: nat \to Z.
+sigma_p (k+n) p g
+= sigma_p k (\lambda x.p (x+n)) (\lambda x.g (x+n)) + sigma_p n p g.
+intros.
+elim k
+ [reflexivity
+ |apply (bool_elim ? (p (n1+n)))
+ [intro.
+ simplify in \vdash (? ? (? % ? ?) ?).
+ rewrite > (true_to_sigma_p_Sn ? ? ? H1).
+ rewrite > (true_to_sigma_p_Sn n1 (\lambda x.p (x+n)) ? H1).
+ rewrite > assoc_Zplus.
+ rewrite < H.reflexivity
+ |intro.
+ simplify in \vdash (? ? (? % ? ?) ?).
+ rewrite > (false_to_sigma_p_Sn ? ? ? H1).
+ rewrite > (false_to_sigma_p_Sn n1 (\lambda x.p (x+n)) ? H1).
+ assumption.
+ ]
+ ]
+qed.
+
+theorem false_to_eq_sigma_p: \forall n,m:nat.n \le m \to
+\forall p:nat \to bool.
+\forall g: nat \to Z. (\forall i:nat. n \le i \to i < m \to
+p i = false) \to sigma_p m p g = sigma_p n p g.
+intros 5.
+elim H
+ [reflexivity
+ |simplify.
+ rewrite > H3
+ [simplify.
+ apply H2.
+ intros.
+ apply H3[apply H4|apply le_S.assumption]
+ |assumption
+ |apply le_n
+ ]
+ ]
+qed.
+
+theorem sigma_p2 :
+\forall n,m:nat.
+\forall p1,p2:nat \to bool.
+\forall g: nat \to nat \to Z.
+sigma_p (n*m)
+ (\lambda x.andb (p1 (div x m)) (p2 (mod x m)))
+ (\lambda x.g (div x m) (mod x m)) =
+sigma_p n p1
+ (\lambda x.sigma_p m p2 (g x)).
+intros.
+elim n
+ [simplify.reflexivity
+ |apply (bool_elim ? (p1 n1))
+ [intro.
+ rewrite > (true_to_sigma_p_Sn ? ? ? H1).
+ simplify in \vdash (? ? (? % ? ?) ?);
+ rewrite > sigma_p_plus.
+ rewrite < H.
+ apply eq_f2
+ [apply eq_sigma_p
+ [intros.
+ rewrite > sym_plus.
+ rewrite > (div_plus_times ? ? ? H2).
+ rewrite > (mod_plus_times ? ? ? H2).
+ rewrite > H1.
+ simplify.reflexivity
+ |intros.
+ rewrite > sym_plus.
+ rewrite > (div_plus_times ? ? ? H2).
+ rewrite > (mod_plus_times ? ? ? H2).
+ rewrite > H1.
+ simplify.reflexivity.
+ ]
+ |reflexivity
+ ]
+ |intro.
+ rewrite > (false_to_sigma_p_Sn ? ? ? H1).
+ simplify in \vdash (? ? (? % ? ?) ?);
+ rewrite > sigma_p_plus.
+ rewrite > H.
+ apply (trans_eq ? ? (O+(sigma_p n1 p1 (\lambda x:nat.sigma_p m p2 (g x)))))
+ [apply eq_f2
+ [rewrite > (eq_sigma_p ? (\lambda x.false) ? (\lambda x:nat.g ((x+n1*m)/m) ((x+n1*m)\mod m)))
+ [apply sigma_p_false
+ |intros.
+ rewrite > sym_plus.
+ rewrite > (div_plus_times ? ? ? H2).
+ rewrite > (mod_plus_times ? ? ? H2).
+ rewrite > H1.
+ simplify.reflexivity
+ |intros.reflexivity.
+ ]
+ |reflexivity
+ ]
+ |reflexivity
+ ]
+ ]
+ ]
+qed.
+
+lemma sigma_p_gi: \forall g: nat \to Z.
+\forall n,i.\forall p:nat \to bool.i < n \to p i = true \to
+sigma_p n p g = g i + sigma_p n (\lambda x. andb (p x) (notb (eqb x i))) g.
+intros 2.
+elim n
+ [apply False_ind.
+ apply (not_le_Sn_O i).
+ assumption
+ |apply (bool_elim ? (p n1));intro
+ [elim (le_to_or_lt_eq i n1)
+ [rewrite > true_to_sigma_p_Sn
+ [rewrite > true_to_sigma_p_Sn
+ [rewrite < assoc_Zplus.
+ rewrite < sym_Zplus in \vdash (? ? ? (? % ?)).
+ rewrite > assoc_Zplus.
+ apply eq_f2
+ [reflexivity
+ |apply H[assumption|assumption]
+ ]
+ |rewrite > H3.simplify.
+ change with (notb (eqb n1 i) = notb false).
+ apply eq_f.
+ apply not_eq_to_eqb_false.
+ unfold Not.intro.
+ apply (lt_to_not_eq ? ? H4).
+ apply sym_eq.assumption
+ ]
+ |assumption
+ ]
+ |rewrite > true_to_sigma_p_Sn
+ [rewrite > H4.
+ apply eq_f2
+ [reflexivity
+ |rewrite > false_to_sigma_p_Sn
+ [apply eq_sigma_p
+ [intros.
+ elim (p x)
+ [simplify.
+ change with (notb false = notb (eqb x n1)).
+ apply eq_f.
+ apply sym_eq.
+ apply not_eq_to_eqb_false.
+ apply (lt_to_not_eq ? ? H5)
+ |reflexivity
+ ]
+ |intros.reflexivity
+ ]
+ |rewrite > H3.
+ rewrite > (eq_to_eqb_true ? ? (refl_eq ? n1)).
+ reflexivity
+ ]
+ ]
+ |assumption
+ ]
+ |apply le_S_S_to_le.assumption
+ ]
+ |rewrite > false_to_sigma_p_Sn
+ [elim (le_to_or_lt_eq i n1)
+ [rewrite > false_to_sigma_p_Sn
+ [apply H[assumption|assumption]
+ |rewrite > H3.reflexivity
+ ]
+ |apply False_ind.
+ apply not_eq_true_false.
+ rewrite < H2.
+ rewrite > H4.
+ assumption
+ |apply le_S_S_to_le.assumption
+ ]
+ |assumption
+ ]
+ ]
+ ]
+qed.
+
+theorem eq_sigma_p_gh:
+\forall g: nat \to Z.
+\forall h,h1: nat \to nat.\forall n,n1.
+\forall p1,p2:nat \to bool.
+(\forall i. i < n \to p1 i = true \to p2 (h i) = true) \to
+(\forall i. i < n \to p1 i = true \to h1 (h i) = i) \to
+(\forall i. i < n \to p1 i = true \to h i < n1) \to
+(\forall j. j < n1 \to p2 j = true \to p1 (h1 j) = true) \to
+(\forall j. j < n1 \to p2 j = true \to h (h1 j) = j) \to
+(\forall j. j < n1 \to p2 j = true \to h1 j < n) \to
+sigma_p n p1 (\lambda x.g(h x)) = sigma_p n1 (\lambda x.p2 x) g.
+intros 4.
+elim n
+ [generalize in match H5.
+ elim n1
+ [reflexivity
+ |apply (bool_elim ? (p2 n2));intro
+ [apply False_ind.
+ apply (not_le_Sn_O (h1 n2)).
+ apply H7
+ [apply le_n|assumption]
+ |rewrite > false_to_sigma_p_Sn
+ [apply H6.
+ intros.
+ apply H7[apply le_S.apply H9|assumption]
+ |assumption
+ ]
+ ]
+ ]
+ |apply (bool_elim ? (p1 n1));intro
+ [rewrite > true_to_sigma_p_Sn
+ [rewrite > (sigma_p_gi g n2 (h n1))
+ [apply eq_f2
+ [reflexivity
+ |apply H
+ [intros.
+ rewrite > H1
+ [simplify.
+ change with ((\not eqb (h i) (h n1))= \not false).
+ apply eq_f.
+ apply not_eq_to_eqb_false.
+ unfold Not.intro.
+ apply (lt_to_not_eq ? ? H8).
+ rewrite < H2
+ [rewrite < (H2 n1)
+ [apply eq_f.assumption|apply le_n|assumption]
+ |apply le_S.assumption
+ |assumption
+ ]
+ |apply le_S.assumption
+ |assumption
+ ]
+ |intros.
+ apply H2[apply le_S.assumption|assumption]
+ |intros.
+ apply H3[apply le_S.assumption|assumption]
+ |intros.
+ apply H4
+ [assumption
+ |generalize in match H9.
+ elim (p2 j)
+ [reflexivity|assumption]
+ ]
+ |intros.
+ apply H5
+ [assumption
+ |generalize in match H9.
+ elim (p2 j)
+ [reflexivity|assumption]
+ ]
+ |intros.
+ elim (le_to_or_lt_eq (h1 j) n1)
+ [assumption
+ |generalize in match H9.
+ elim (p2 j)
+ [simplify in H11.
+ absurd (j = (h n1))
+ [rewrite < H10.
+ rewrite > H5
+ [reflexivity|assumption|auto]
+ |apply eqb_false_to_not_eq.
+ generalize in match H11.
+ elim (eqb j (h n1))
+ [apply sym_eq.assumption|reflexivity]
+ ]
+ |simplify in H11.
+ apply False_ind.
+ apply not_eq_true_false.
+ apply sym_eq.assumption
+ ]
+ |apply le_S_S_to_le.
+ apply H6
+ [assumption
+ |generalize in match H9.
+ elim (p2 j)
+ [reflexivity|assumption]
+ ]
+ ]
+ ]
+ ]
+ |apply H3[apply le_n|assumption]
+ |apply H1[apply le_n|assumption]
+ ]
+ |assumption
+ ]
+ |rewrite > false_to_sigma_p_Sn
+ [apply H
+ [intros.apply H1[apply le_S.assumption|assumption]
+ |intros.apply H2[apply le_S.assumption|assumption]
+ |intros.apply H3[apply le_S.assumption|assumption]
+ |intros.apply H4[assumption|assumption]
+ |intros.apply H5[assumption|assumption]
+ |intros.
+ elim (le_to_or_lt_eq (h1 j) n1)
+ [assumption
+ |absurd (j = (h n1))
+ [rewrite < H10.
+ rewrite > H5
+ [reflexivity|assumption|assumption]
+ |unfold Not.intro.
+ apply not_eq_true_false.
+ rewrite < H7.
+ rewrite < H10.
+ rewrite > H4
+ [reflexivity|assumption|assumption]
+ ]
+ |apply le_S_S_to_le.
+ apply H6[assumption|assumption]
+ ]
+ ]
+ |assumption
+ ]
+ ]
+ ]
+qed.
+
+definition p_ord_times \def
+\lambda p,m,x.
+ match p_ord x p with
+ [pair q r \Rightarrow r*m+q].
+
+theorem eq_p_ord_times: \forall p,m,x.
+p_ord_times p m x = (ord_rem x p)*m+(ord x p).
+intros.unfold p_ord_times. unfold ord_rem.
+unfold ord.
+elim (p_ord x p).
+reflexivity.
+qed.
+
+theorem div_p_ord_times:
+\forall p,m,x. ord x p < m \to p_ord_times p m x / m = ord_rem x p.
+intros.rewrite > eq_p_ord_times.
+apply div_plus_times.
+assumption.
+qed.
+
+theorem mod_p_ord_times:
+\forall p,m,x. ord x p < m \to p_ord_times p m x \mod m = ord x p.
+intros.rewrite > eq_p_ord_times.
+apply mod_plus_times.
+assumption.
+qed.
+
+theorem times_O_to_O: \forall n,m:nat.n*m = O \to n = O \lor m= O.
+apply nat_elim2;intros
+ [left.reflexivity
+ |right.reflexivity
+ |apply False_ind.
+ simplify in H1.
+ apply (not_eq_O_S ? (sym_eq ? ? ? H1))
+ ]
+qed.
+
+theorem prime_to_lt_O: \forall p. prime p \to O < p.
+intros.elim H.apply lt_to_le.assumption.
+qed.
+
+theorem divides_exp_to_lt_ord:\forall n,m,j,p. O < n \to prime p \to
+p \ndivides n \to j \divides n*(exp p m) \to ord j p < S m.
+intros.
+cut (m = ord (n*(exp p m)) p)
+ [apply le_S_S.
+ rewrite > Hcut.
+ apply divides_to_le_ord
+ [elim (le_to_or_lt_eq ? ? (le_O_n j))
+ [assumption
+ |apply False_ind.
+ apply (lt_to_not_eq ? ? H).
+ elim H3.
+ rewrite < H4 in H5.simplify in H5.
+ elim (times_O_to_O ? ? H5)
+ [apply sym_eq.assumption
+ |apply False_ind.
+ apply (not_le_Sn_n O).
+ rewrite < H6 in \vdash (? ? %).
+ apply lt_O_exp.
+ elim H1.apply lt_to_le.assumption
+ ]
+ ]
+ |rewrite > (times_n_O O).
+ apply lt_times
+ [assumption|apply lt_O_exp.apply (prime_to_lt_O ? H1)]
+ |assumption
+ |assumption
+ ]
+ |unfold ord.
+ rewrite > (p_ord_exp1 p ? m n)
+ [reflexivity
+ |apply (prime_to_lt_O ? H1)
+ |assumption
+ |apply sym_times
+ ]
+ ]
+qed.
+
+theorem divides_exp_to_divides_ord_rem:\forall n,m,j,p. O < n \to prime p \to
+p \ndivides n \to j \divides n*(exp p m) \to ord_rem j p \divides n.
+intros.
+cut (O < j)
+ [cut (n = ord_rem (n*(exp p m)) p)
+ [rewrite > Hcut1.
+ apply divides_to_divides_ord_rem
+ [assumption
+ |rewrite > (times_n_O O).
+ apply lt_times
+ [assumption|apply lt_O_exp.apply (prime_to_lt_O ? H1)]
+ |assumption
+ |assumption
+ ]
+ |unfold ord_rem.
+ rewrite > (p_ord_exp1 p ? m n)
+ [reflexivity
+ |apply (prime_to_lt_O ? H1)
+ |assumption
+ |apply sym_times
+ ]
+ ]
+ |elim (le_to_or_lt_eq ? ? (le_O_n j))
+ [assumption
+ |apply False_ind.
+ apply (lt_to_not_eq ? ? H).
+ elim H3.
+ rewrite < H4 in H5.simplify in H5.
+ elim (times_O_to_O ? ? H5)
+ [apply sym_eq.assumption
+ |apply False_ind.
+ apply (not_le_Sn_n O).
+ rewrite < H6 in \vdash (? ? %).
+ apply lt_O_exp.
+ elim H1.apply lt_to_le.assumption
+ ]
+ ]
+ ]
+qed.
+
+theorem sigma_p_divides_b:
+\forall n,m,p:nat.O < n \to prime p \to Not (divides p n) \to
+\forall g: nat \to Z.
+sigma_p (S (n*(exp p m))) (\lambda x.divides_b x (n*(exp p m))) g =
+sigma_p (S n) (\lambda x.divides_b x n)
+ (\lambda x.sigma_p (S m) (\lambda y.true) (\lambda y.g (x*(exp p y)))).
+intros.
+cut (O < p)
+ [rewrite < sigma_p2.
+ apply (trans_eq ? ?
+ (sigma_p (S n*S m) (\lambda x:nat.divides_b (x/S m) n)
+ (\lambda x:nat.g (x/S m*(p)\sup(x\mod S m)))))
+ [apply sym_eq.
+ apply (eq_sigma_p_gh g ? (p_ord_times p (S m)))
+ [intros.
+ lapply (divides_b_true_to_lt_O ? ? H H4).
+ apply divides_to_divides_b_true
+ [rewrite > (times_n_O O).
+ apply lt_times
+ [assumption
+ |apply lt_O_exp.assumption
+ ]
+ |apply divides_times
+ [apply divides_b_true_to_divides.assumption
+ |apply (witness ? ? (p \sup (m-i \mod (S m)))).
+ rewrite < exp_plus_times.
+ apply eq_f.
+ rewrite > sym_plus.
+ apply plus_minus_m_m.
+ auto
+ ]
+ ]
+ |intros.
+ lapply (divides_b_true_to_lt_O ? ? H H4).
+ unfold p_ord_times.
+ rewrite > (p_ord_exp1 p ? (i \mod (S m)) (i/S m))
+ [change with ((i/S m)*S m+i \mod S m=i).
+ apply sym_eq.
+ apply div_mod.
+ apply lt_O_S
+ |assumption
+ |unfold Not.intro.
+ apply H2.
+ apply (trans_divides ? (i/ S m))
+ [assumption|
+ apply divides_b_true_to_divides;assumption]
+ |apply sym_times.
+ ]
+ |intros.
+ apply le_S_S.
+ apply le_times
+ [apply le_S_S_to_le.
+ change with ((i/S m) < S n).
+ apply (lt_times_to_lt_l m).
+ apply (le_to_lt_to_lt ? i)
+ [auto|assumption]
+ |apply le_exp
+ [assumption
+ |apply le_S_S_to_le.
+ apply lt_mod_m_m.
+ apply lt_O_S
+ ]
+ ]
+ |intros.
+ cut (ord j p < S m)
+ [rewrite > div_p_ord_times
+ [apply divides_to_divides_b_true
+ [apply lt_O_ord_rem
+ [elim H1.assumption
+ |apply (divides_b_true_to_lt_O ? ? ? H4).
+ rewrite > (times_n_O O).
+ apply lt_times
+ [assumption|apply lt_O_exp.assumption]
+ ]
+ |apply (divides_exp_to_divides_ord_rem ? m ? ? H H1 H2).
+ apply divides_b_true_to_divides.
+ assumption
+ ]
+ |assumption
+ ]
+ |apply (divides_exp_to_lt_ord ? ? ? ? H H1 H2).
+ apply (divides_b_true_to_divides ? ? H4).
+ apply (divides_b_true_to_lt_O ? ? H4)
+ ]
+ |intros.
+ cut (ord j p < S m)
+ [rewrite > div_p_ord_times
+ [rewrite > mod_p_ord_times
+ [rewrite > sym_times.
+ apply sym_eq.
+ apply exp_ord
+ [elim H1.assumption
+ |apply (divides_b_true_to_lt_O ? ? ? H4).
+ rewrite > (times_n_O O).
+ apply lt_times
+ [assumption|apply lt_O_exp.assumption]
+ ]
+ |apply (divides_exp_to_lt_ord ? ? ? ? H H1 H2).
+ apply (divides_b_true_to_divides ? ? H4).
+ apply (divides_b_true_to_lt_O ? ? H4)
+ ]
+ |assumption
+ ]
+ |apply (divides_exp_to_lt_ord ? ? ? ? H H1 H2).
+ apply (divides_b_true_to_divides ? ? H4).
+ apply (divides_b_true_to_lt_O ? ? H4).
+ ]
+ |intros.
+ rewrite > eq_p_ord_times.
+ rewrite > sym_plus.
+ apply (lt_to_le_to_lt ? (S m +ord_rem j p*S m))
+ [apply lt_plus_l.
+ apply le_S_S.
+ cut (m = ord (n*(p \sup m)) p)
+ [rewrite > Hcut1.
+ apply divides_to_le_ord
+ [apply (divides_b_true_to_lt_O ? ? ? H4).
+ rewrite > (times_n_O O).
+ apply lt_times
+ [assumption|apply lt_O_exp.assumption]
+ |rewrite > (times_n_O O).
+ apply lt_times
+ [assumption|apply lt_O_exp.assumption]
+ |assumption
+ |apply divides_b_true_to_divides.
+ assumption
+ ]
+ |unfold ord.
+ rewrite > sym_times.
+ rewrite > (p_ord_exp1 p ? m n)
+ [reflexivity
+ |assumption
+ |assumption
+ |reflexivity
+ ]
+ ]
+ |change with (S (ord_rem j p)*S m \le S n*S m).
+ apply le_times_l.
+ apply le_S_S.
+ apply divides_to_le
+ [assumption
+ |apply (divides_exp_to_divides_ord_rem ? m ? ? H H1 H2).
+ apply divides_b_true_to_divides.
+ assumption
+ ]
+ ]
+ ]
+ |apply eq_sigma_p
+ [intros.
+ elim (divides_b (x/S m) n);reflexivity
+ |intros.reflexivity
+ ]
+ ]
+ |elim H1.apply lt_to_le.assumption
+ ]
+qed.
+