definition sqrt \def
\lambda n.max n (\lambda x.leb (x*x) n).
-
+
+theorem eq_sqrt: \forall n. sqrt (n*n) = n.
+intros.
+unfold sqrt.apply max_spec_to_max.
+unfold max_spec.split
+ [split
+ [cases n
+ [apply le_n
+ |rewrite > times_n_SO in ⊢ (? % ?).
+ apply le_times_r.
+ apply le_S_S.apply le_O_n
+ ]
+ |apply le_to_leb_true.apply le_n
+ ]
+ |intros.
+ apply lt_to_leb_false.
+ apply lt_times;assumption
+ ]
+qed.
+
theorem le_sqrt_to_le_times_l : \forall m,n.n \leq sqrt m \to n*n \leq m.
intros;apply (trans_le ? (sqrt m * sqrt m))
[apply le_times;assumption
qed.
alias num (instance 0) = "natural number".
+
+lemma lt_sqrt_n : \forall n.1 < n \to sqrt n < n.
+intros.
+elim (le_to_or_lt_eq ? ? (le_sqrt_n_n n))
+ [assumption
+ |apply False_ind.
+ apply (le_to_not_lt ? ? (leq_sqrt_n n)).
+ rewrite > H1.
+ rewrite > times_n_SO in ⊢ (? % ?).
+ apply lt_times_r1
+ [apply lt_to_le.assumption
+ |assumption
+ ]
+ ]
+qed.
+
+lemma lt_sqrt: \forall n.n < (exp (S (sqrt n)) 2).
+intro.
+cases n
+ [apply le_n
+ |cases n1
+ [simplify.apply lt_to_le.apply lt_to_le.apply le_n
+ |apply not_le_to_lt.
+ apply leb_false_to_not_le.
+ rewrite > exp_SSO.
+ apply (lt_max_to_false (\lambda x.(leb (x*x) (S(S n2)))) (S(S n2)))
+ [apply le_n
+ |apply lt_sqrt_n.
+ apply le_S_S.apply lt_O_S.
+ ]
+ ]
+ ]
+qed.
+
+lemma le_sqrt_n1: \forall n. n - 2*sqrt n \le exp (sqrt n) 2.
+intros.
+apply le_plus_to_minus.
+apply le_S_S_to_le.
+cut (S ((sqrt n)\sup 2+2*sqrt n) = (exp (S(sqrt n)) 2))
+ [rewrite > Hcut.apply lt_sqrt
+ |rewrite > exp_SSO.rewrite > exp_SSO.
+ simplify.apply eq_f.
+ rewrite < times_n_Sm.
+ rewrite < plus_n_O.
+ rewrite < assoc_plus in ⊢ (? ? ? %).
+ rewrite > sym_plus.
+ reflexivity
+ ]
+qed.
+
+(* falso per n=2, m=7 e n=3, m =15 *)
+lemma le_sqrt_nl: \forall n,m. 3 < n \to
+m*(pred m)*n \le exp (sqrt ((exp m 2)*n)) 2.
+intros.
+rewrite > minus_n_O in ⊢ (? (? (? ? (? %)) ?) ?).
+rewrite < eq_minus_S_pred.
+rewrite > distr_times_minus.
+rewrite < times_n_SO.
+rewrite > sym_times.
+rewrite > distr_times_minus.
+rewrite > sym_times.
+apply (trans_le ? (m*m*n -2*sqrt(m*m*n)))
+ [apply monotonic_le_minus_r.
+ apply (le_exp_to_le1 ? ? 2)
+ [apply lt_O_S
+ |rewrite < times_exp.
+ apply (trans_le ? ((exp 2 2)*(m*m*n)))
+ [apply le_times_r.
+ rewrite > exp_SSO.
+ apply leq_sqrt_n
+ |rewrite < exp_SSO.
+ rewrite < times_exp.
+ rewrite < assoc_times.
+ rewrite < sym_times in ⊢ (? (? % ?) ?).
+ rewrite > assoc_times.
+ rewrite > sym_times.
+ apply le_times_l.
+ rewrite > exp_SSO in ⊢ (? ? %).
+ apply le_times_l.
+ assumption
+ ]
+ ]
+ |rewrite <exp_SSO.
+ apply le_sqrt_n1
+ ]
+qed.
+
lemma le_sqrt_log_n : \forall n,b. 2 < b \to sqrt n * log b n \leq n.
intros.
apply (trans_le ? ? ? ? (leq_sqrt_n ?));