+
+include "tutorial/chapter2.ma".
include "basics/bool.ma".
inductive list (A:Type[0]) : Type[0] :=
\ 5a href="cic:/matita/tutorial/chapter3/filter.def(2)"\ 6filter\ 5/a\ 6 A p (a\ 5a title="cons" href="cic:/fakeuri.def(1)"\ 6:\ 5/a\ 6:l) \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter3/filter.def(2)"\ 6filter\ 5/a\ 6 A p l.
#A #l #a #p #pa (elim l) normalize >pa normalize // qed.
+(*
theorem eq_map : ∀A,B,f,g,l. (∀x.f x \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 g x) → \ 5a href="cic:/matita/basics/list/map.fix(0,3,1)"\ 6map\ 5/a\ 6 A B f l \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/list/map.fix(0,3,1)"\ 6map\ 5/a\ 6 A B g l.
#A #B #f #g #l #eqfg (elim l) normalize // qed.
+*)
(*
let rec dprodl (A:Type[0]) (f:A→Type[0]) (l1:list A) (g:(∀a:A.list (f a))) on l1 ≝
| cons a tl ⇒ (map ??(dp ?? a) (g a)) @ dprodl A f tl g
]. *)
-(**************************** length ******************************
+(**************************** length ******************************)
-let rec length (A:Type[0]) (l:list A) on l ≝
+let rec length (A:Type[0]) (l:\ 5a href="cic:/matita/tutorial/chapter3/list.ind(1,0,1)"\ 6list\ 5/a\ 6 A) on l ≝
match l with
- [ nil ⇒ 0
- | cons a tl ⇒ S (length A tl)].
+ [ nil ⇒ \ 5a href="cic:/matita/tutorial/chapter2/nat.con(0,1,0)"\ 6O\ 5/a\ 6
+ | cons a tl ⇒ \ 5a href="cic:/matita/tutorial/chapter2/nat.con(0,2,0)"\ 6S\ 5/a\ 6 (length A tl)].
-let rec nth n (A:Type[0]) (l:list A) (d:A) ≝
+let rec nth n (A:Type[0]) (l:\ 5a href="cic:/matita/tutorial/chapter3/list.ind(1,0,1)"\ 6list\ 5/a\ 6 A) (d:A) ≝
match n with
- [O ⇒ hd A l d
- |S m ⇒ nth m A (tail A l) d].
+ [O ⇒ \ 5a href="cic:/matita/tutorial/chapter3/hd.def(1)"\ 6hd\ 5/a\ 6 A l d
+ |S m ⇒ nth m A (\ 5a href="cic:/matita/tutorial/chapter3/tail.def(1)"\ 6tail\ 5/a\ 6 A l) d].
-**************************** fold *******************************)
+(**************************** fold *******************************)
-let rec fold (A,B:Type[0]) (op:B → B → B) (b:B) (p:A→\ 5a href="cic:/matita/basics/bool/bool.ind(1,0,0)"\ 6bool\ 5/a\ 6) (f:A→B) (l:\ 5a href="cic:/matita/basics/list/list.ind(1,0,1)"\ 6list\ 5/a\ 6 A) on l :B ≝
+let rec fold (A,B:Type[0]) (op:B → B → B) (b:B) (p:A→\ 5a href="cic:/matita/basics/bool/bool.ind(1,0,0)"\ 6bool\ 5/a\ 6) (f:A→B) (l:\ 5a href="cic:/matita/tutorial/chapter3/list.ind(1,0,1)"\ 6list\ 5/a\ 6 A) on l :B ≝
match l with
[ nil ⇒ b
| cons a l ⇒ \ 5a href="cic:/matita/basics/bool/if_then_else.def(1)"\ 6if_then_else\ 5/a\ 6 ? (p a) (op (f a) (fold A B op b p f l))
theorem fold_filter:
∀A,B.∀a:A.∀l.∀p.∀op:B→B→B.∀nil.∀f:A →B.
\ 5a title="\fold" href="cic:/fakeuri.def(1)"\ 6\fold\ 5/a\ 6[op,nil]_{i ∈ l| p i} (f i) \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6
- \ 5a title="\fold" href="cic:/fakeuri.def(1)"\ 6\fold\ 5/a\ 6[op,nil]_{i ∈ (\ 5a href="cic:/matita/basics/list/filter.def(2)"\ 6filter\ 5/a\ 6 A p l)} (f i).
+ \ 5a title="\fold" href="cic:/fakeuri.def(1)"\ 6\fold\ 5/a\ 6[op,nil]_{i ∈ (\ 5a href="cic:/matita/tutorial/chapter3/filter.def(2)"\ 6filter\ 5/a\ 6 A p l)} (f i).
#A #B #a #l #p #op #nil #f elim l //
#a #tl #Hind cases(\ 5a href="cic:/matita/basics/bool/true_or_false.def(1)"\ 6true_or_false\ 5/a\ 6 (p a)) #pa
- [ >\ 5a href="cic:/matita/basics/list/filter_true.def(3)"\ 6filter_true\ 5/a\ 6 // > \ 5a href="cic:/matita/basics/list/fold_true.def(3)"\ 6fold_true\ 5/a\ 6 // >\ 5a href="cic:/matita/basics/list/fold_true.def(3)"\ 6fold_true\ 5/a\ 6 //
- | >\ 5a href="cic:/matita/basics/list/filter_false.def(3)"\ 6filter_false\ 5/a\ 6 // >\ 5a href="cic:/matita/basics/list/fold_false.def(3)"\ 6fold_false\ 5/a\ 6 // ]
+ [ >\ 5a href="cic:/matita/tutorial/chapter3/filter_true.def(3)"\ 6filter_true\ 5/a\ 6 // > \ 5a href="cic:/matita/tutorial/chapter3/fold_true.def(3)"\ 6fold_true\ 5/a\ 6 // >\ 5a href="cic:/matita/tutorial/chapter3/fold_true.def(3)"\ 6fold_true\ 5/a\ 6 //
+ | >\ 5a href="cic:/matita/tutorial/chapter3/filter_false.def(3)"\ 6filter_false\ 5/a\ 6 // >\ 5a href="cic:/matita/tutorial/chapter3/fold_false.def(3)"\ 6fold_false\ 5/a\ 6 // ]
qed.
record Aop (A:Type[0]) (nil:A) : Type[0] ≝
assoc: ∀a,b,c.op a (op b c) \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 op (op a b) c
}.
-theorem fold_sum: ∀A,B. ∀I,J:\ 5a href="cic:/matita/basics/list/list.ind(1,0,1)"\ 6list\ 5/a\ 6 A.∀nil.∀op:\ 5a href="cic:/matita/basics/list/Aop.ind(1,0,2)"\ 6Aop\ 5/a\ 6 B nil.∀f.
+theorem fold_sum: ∀A,B. ∀I,J:\ 5a href="cic:/matita/tutorial/chapter3/list.ind(1,0,1)"\ 6list\ 5/a\ 6 A.∀nil.∀op:\ 5a href="cic:/matita/tutorial/chapter3/Aop.ind(1,0,2)"\ 6Aop\ 5/a\ 6 B nil.∀f.
op (\ 5a title="\fold" href="cic:/fakeuri.def(1)"\ 6\fold\ 5/a\ 6[op,nil]_{i∈I} (f i)) (\ 5a title="\fold" href="cic:/fakeuri.def(1)"\ 6\fold\ 5/a\ 6[op,nil]_{i∈J} (f i)) \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6
\ 5a title="\fold" href="cic:/fakeuri.def(1)"\ 6\fold\ 5/a\ 6[op,nil]_{i∈(I\ 5a title="append" href="cic:/fakeuri.def(1)"\ 6@\ 5/a\ 6J)} (f i).
#A #B #I #J #nil #op #f (elim I) normalize
- [>\ 5a href="cic:/matita/basics/list/nill.fix(0,2,2)"\ 6nill\ 5/a\ 6 //|#a #tl #Hind <\ 5a href="cic:/matita/basics/list/assoc.fix(0,2,2)"\ 6assoc\ 5/a\ 6 //]
+ [>\ 5a href="cic:/matita/tutorial/chapter3/nill.fix(0,2,2)"\ 6nill\ 5/a\ 6 //|#a #tl #Hind <\ 5a href="cic:/matita/tutorial/chapter3/assoc.fix(0,2,2)"\ 6assoc\ 5/a\ 6 //]
qed.
\ No newline at end of file