]> matita.cs.unibo.it Git - helm.git/commitdiff
commit by user andrea
authormatitaweb <claudio.sacerdoticoen@unibo.it>
Fri, 14 Oct 2011 10:44:57 +0000 (10:44 +0000)
committermatitaweb <claudio.sacerdoticoen@unibo.it>
Fri, 14 Oct 2011 10:44:57 +0000 (10:44 +0000)
weblib/tutorial/chapter3.ma

index bd5d17297c4f57c33c02e124b734f68ba095fbd0..cafb853238a123e37b8500f17cbb727b15d0dc58 100644 (file)
@@ -1,3 +1,5 @@
+
+include "tutorial/chapter2.ma".
 include "basics/bool.ma".
 
 inductive list (A:Type[0]) : Type[0] :=
@@ -81,8 +83,10 @@ lemma filter_false : ∀A,l,a,p. p a \ 5a title="leibnitz's equality" href="cic:/f
   \ 5a href="cic:/matita/tutorial/chapter3/filter.def(2)"\ 6filter\ 5/a\ 6 A p (a\ 5a title="cons" href="cic:/fakeuri.def(1)"\ 6:\ 5/a\ 6:l) \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter3/filter.def(2)"\ 6filter\ 5/a\ 6 A p l.
 #A #l #a #p #pa (elim l) normalize >pa normalize // qed.
 
+(*
 theorem eq_map : ∀A,B,f,g,l. (∀x.f x \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 g x) → \ 5a href="cic:/matita/basics/list/map.fix(0,3,1)"\ 6map\ 5/a\ 6 A B f l \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/list/map.fix(0,3,1)"\ 6map\ 5/a\ 6 A B g l.
 #A #B #f #g #l #eqfg (elim l) normalize // qed.
+*)
 
 (*
 let rec dprodl (A:Type[0]) (f:A→Type[0]) (l1:list A) (g:(∀a:A.list (f a))) on l1 ≝
@@ -91,21 +95,21 @@ match l1 with
   | cons a tl ⇒ (map ??(dp ?? a) (g a)) @ dprodl A f tl g
   ]. *)
 
-(**************************** length ******************************
+(**************************** length ******************************)
 
-let rec length (A:Type[0]) (l:list A) on l ≝ 
+let rec length (A:Type[0]) (l:\ 5a href="cic:/matita/tutorial/chapter3/list.ind(1,0,1)"\ 6list\ 5/a\ 6 A) on l ≝ 
   match l with 
-    [ nil ⇒ 0
-    | cons a tl ⇒ S (length A tl)].
+    [ nil ⇒ \ 5a href="cic:/matita/tutorial/chapter2/nat.con(0,1,0)"\ 6O\ 5/a\ 6
+    | cons a tl ⇒ \ 5a href="cic:/matita/tutorial/chapter2/nat.con(0,2,0)"\ 6S\ 5/a\ 6 (length A tl)].
 
-let rec nth n (A:Type[0]) (l:list A) (d:A)  ≝  
+let rec nth n (A:Type[0]) (l:\ 5a href="cic:/matita/tutorial/chapter3/list.ind(1,0,1)"\ 6list\ 5/a\ 6 A) (d:A)  ≝  
   match n with
-    [O ⇒ hd A l d
-    |S m ⇒ nth m A (tail A l) d].
+    [O ⇒ \ 5a href="cic:/matita/tutorial/chapter3/hd.def(1)"\ 6hd\ 5/a\ 6 A l d
+    |S m ⇒ nth m A (\ 5a href="cic:/matita/tutorial/chapter3/tail.def(1)"\ 6tail\ 5/a\ 6 A l) d].
 
-**************************** fold *******************************)
+(**************************** fold *******************************)
 
-let rec fold (A,B:Type[0]) (op:B → B → B) (b:B) (p:A→\ 5a href="cic:/matita/basics/bool/bool.ind(1,0,0)"\ 6bool\ 5/a\ 6) (f:A→B) (l:\ 5a href="cic:/matita/basics/list/list.ind(1,0,1)"\ 6list\ 5/a\ 6 A) on l :B ≝  
+let rec fold (A,B:Type[0]) (op:B → B → B) (b:B) (p:A→\ 5a href="cic:/matita/basics/bool/bool.ind(1,0,0)"\ 6bool\ 5/a\ 6) (f:A→B) (l:\ 5a href="cic:/matita/tutorial/chapter3/list.ind(1,0,1)"\ 6list\ 5/a\ 6 A) on l :B ≝  
  match l with 
   [ nil ⇒ b 
   | cons a l ⇒ \ 5a href="cic:/matita/basics/bool/if_then_else.def(1)"\ 6if_then_else\ 5/a\ 6 ? (p a) (op (f a) (fold A B op b p f l))
@@ -136,11 +140,11 @@ p a \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic
 theorem fold_filter: 
 ∀A,B.∀a:A.∀l.∀p.∀op:B→B→B.∀nil.∀f:A →B.
   \ 5a title="\fold" href="cic:/fakeuri.def(1)"\ 6\fold\ 5/a\ 6[op,nil]_{i ∈ l| p i} (f i) \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 
-    \ 5a title="\fold" href="cic:/fakeuri.def(1)"\ 6\fold\ 5/a\ 6[op,nil]_{i ∈ (\ 5a href="cic:/matita/basics/list/filter.def(2)"\ 6filter\ 5/a\ 6 A p l)} (f i).
+    \ 5a title="\fold" href="cic:/fakeuri.def(1)"\ 6\fold\ 5/a\ 6[op,nil]_{i ∈ (\ 5a href="cic:/matita/tutorial/chapter3/filter.def(2)"\ 6filter\ 5/a\ 6 A p l)} (f i).
 #A #B #a #l #p #op #nil #f elim l //  
 #a #tl #Hind cases(\ 5a href="cic:/matita/basics/bool/true_or_false.def(1)"\ 6true_or_false\ 5/a\ 6 (p a)) #pa 
-  [ >\ 5a href="cic:/matita/basics/list/filter_true.def(3)"\ 6filter_true\ 5/a\ 6 // > \ 5a href="cic:/matita/basics/list/fold_true.def(3)"\ 6fold_true\ 5/a\ 6 // >\ 5a href="cic:/matita/basics/list/fold_true.def(3)"\ 6fold_true\ 5/a\ 6 //
-  | >\ 5a href="cic:/matita/basics/list/filter_false.def(3)"\ 6filter_false\ 5/a\ 6 // >\ 5a href="cic:/matita/basics/list/fold_false.def(3)"\ 6fold_false\ 5/a\ 6 // ]
+  [ >\ 5a href="cic:/matita/tutorial/chapter3/filter_true.def(3)"\ 6filter_true\ 5/a\ 6 // > \ 5a href="cic:/matita/tutorial/chapter3/fold_true.def(3)"\ 6fold_true\ 5/a\ 6 // >\ 5a href="cic:/matita/tutorial/chapter3/fold_true.def(3)"\ 6fold_true\ 5/a\ 6 //
+  | >\ 5a href="cic:/matita/tutorial/chapter3/filter_false.def(3)"\ 6filter_false\ 5/a\ 6 // >\ 5a href="cic:/matita/tutorial/chapter3/fold_false.def(3)"\ 6fold_false\ 5/a\ 6 // ]
 qed.
 
 record Aop (A:Type[0]) (nil:A) : Type[0] ≝
@@ -150,9 +154,9 @@ record Aop (A:Type[0]) (nil:A) : Type[0] ≝
    assoc: ∀a,b,c.op a (op b c) \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 op (op a b) c
   }.
 
-theorem fold_sum: ∀A,B. ∀I,J:\ 5a href="cic:/matita/basics/list/list.ind(1,0,1)"\ 6list\ 5/a\ 6 A.∀nil.∀op:\ 5a href="cic:/matita/basics/list/Aop.ind(1,0,2)"\ 6Aop\ 5/a\ 6 B nil.∀f.
+theorem fold_sum: ∀A,B. ∀I,J:\ 5a href="cic:/matita/tutorial/chapter3/list.ind(1,0,1)"\ 6list\ 5/a\ 6 A.∀nil.∀op:\ 5a href="cic:/matita/tutorial/chapter3/Aop.ind(1,0,2)"\ 6Aop\ 5/a\ 6 B nil.∀f.
   op (\ 5a title="\fold" href="cic:/fakeuri.def(1)"\ 6\fold\ 5/a\ 6[op,nil]_{i∈I} (f i)) (\ 5a title="\fold" href="cic:/fakeuri.def(1)"\ 6\fold\ 5/a\ 6[op,nil]_{i∈J} (f i)) \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6
     \ 5a title="\fold" href="cic:/fakeuri.def(1)"\ 6\fold\ 5/a\ 6[op,nil]_{i∈(I\ 5a title="append" href="cic:/fakeuri.def(1)"\ 6@\ 5/a\ 6J)} (f i).
 #A #B #I #J #nil #op #f (elim I) normalize 
-  [>\ 5a href="cic:/matita/basics/list/nill.fix(0,2,2)"\ 6nill\ 5/a\ 6 //|#a #tl #Hind <\ 5a href="cic:/matita/basics/list/assoc.fix(0,2,2)"\ 6assoc\ 5/a\ 6 //]
+  [>\ 5a href="cic:/matita/tutorial/chapter3/nill.fix(0,2,2)"\ 6nill\ 5/a\ 6 //|#a #tl #Hind <\ 5a href="cic:/matita/tutorial/chapter3/assoc.fix(0,2,2)"\ 6assoc\ 5/a\ 6 //]
 qed.
\ No newline at end of file