\r
let delta = L(A(V 0, V 0));;\r
\r
+let rec is_stuck = function\r
+ | C -> true\r
+ | A(t,_) -> is_stuck t\r
+ | _ -> false\r
+;;\r
+\r
let eta_eq' =\r
let rec aux l1 l2 t1 t2 = match t1, t2 with\r
+ | _, _ when is_stuck t1 || is_stuck t2 -> true\r
| L t1, L t2 -> aux l1 l2 t1 t2\r
| L t1, t2 -> aux l1 (l2+1) t1 t2\r
| t1, L t2 -> aux (l1+1) l2 t1 t2\r
\r
(* is arg1 eta-subterm of arg2 ? *)\r
let eta_subterm u =\r
- let rec aux lev t = eta_eq' lev 0 u t || match t with\r
+ let rec aux lev t = if t = C then false else (eta_eq' lev 0 u t || match t with\r
| L t -> aux (lev+1) t\r
| A(t1, t2) -> aux lev t1 || aux lev t2\r
- | _ -> false\r
- in aux 0\r
+ | _ -> false) in\r
+ aux 0\r
;;\r
\r
(* does NOT lift the argument *)\r
;;\r
\r
let rec get_inert = function\r
- | V n -> (n,0)\r
+ | V _ | C as t -> (t,0)\r
| A(t, _) -> let hd,args = get_inert t in hd,args+1\r
| _ -> assert false\r
;;\r
after replacing _v_ w/ a term starting with n lambdas *)\r
let rec no_leading_lambdas v n = function\r
| L t -> 1 + no_leading_lambdas (v+1) n t\r
- | A _ as t -> let v', m = get_inert t in if v = v' then max 0 (n - m) else 0\r
+ | A _ as t -> let v', m = get_inert t in if V v = v' then max 0 (n - m) else 0\r
| V v' -> if v = v' then n else 0\r
| B | C -> 0\r
;;\r
| L t -> aux (lev+1) t\r
| A(t1,t2) as t ->\r
let hd_var', n_args' = get_inert t1 in\r
- if hd_var' = hd_var + lev && n_args <= 1 + n_args'\r
+ if hd_var' = V (hd_var + lev) && n_args <= 1 + n_args'\r
(* the `+1` above is because of t2 *)\r
then Some (lift ~-lev t)\r
else match aux lev t2 with\r
let find_eta_difference p t argsno =\r
let t = inert_cut_at argsno t in\r
let rec aux t u k = match t, u with\r
- | V _, V _ -> problem_fail p "no eta difference found (div subterm of conv?)"\r
+ | V _, V _ -> []\r
| A(t1,t2), A(u1,u2) ->\r
- if not (eta_eq t2 u2) then (k-1)\r
+ print_endline (string_of_t t2 ^ " vs " ^ string_of_t u2);\r
+ if not (eta_eq t2 u2) then (k-1)::aux t1 u1 (k-1)\r
else aux t1 u1 (k-1)\r
| _, _ -> assert false\r
in aux p.div t argsno\r
let compute_max_lambdas_at hd_var j =\r
let rec aux hd = function\r
| A(t1,t2) ->\r
- (if get_inert t1 = (hd, j)\r
+ (if get_inert t1 = (V hd, j)\r
then max ( (*FIXME*)\r
- if is_inert t2 && let hd', j' = get_inert t2 in hd' = hd\r
+ if is_inert t2 && let hd', j' = get_inert t2 in hd' = V hd\r
then let hd', j' = get_inert t2 in j - j'\r
else no_leading_lambdas hd_var j t2)\r
else id) (max (aux hd t1) (aux hd t2))\r
\r
(* step on the head of div, on the k-th argument, with n fresh vars *)\r
let step k n p =\r
- let var, _ = get_inert p.div in\r
-print_cmd "STEP" ("on " ^ string_of_t (V var) ^ " (of:" ^ string_of_int n ^ ")");\r
+ let hd, _ = get_inert p.div in\r
+ match hd with\r
+ | C | L _ | B | A _ -> assert false\r
+ | V var ->\r
+print_cmd "STEP" ("on " ^ string_of_t (V var) ^ " (on " ^ string_of_int (k+1) ^ "th)");\r
let p, t = (* apply fresh vars *)\r
fold_nat (fun (p, t) _ ->\r
let p, v = freshvar p in\r
sanity p\r
;;\r
\r
-let rec auto p =\r
- let hd_var, n_args = get_inert p.div in\r
+let auto p =\r
+ let rec aux p =\r
+ let hd, n_args = get_inert p.div in\r
+ match hd with\r
+ | C | L _ | B | A _ -> assert false\r
+ | V hd_var ->\r
match get_subterm_with_head_and_args hd_var n_args p.conv with\r
| None ->\r
- (try\r
let phase = p.phase in\r
let p = eat p in\r
if phase = `Two\r
then problem_fail p "Auto.2 did not complete the problem"\r
- else auto p\r
- with Done sigma -> sigma)\r
+ else aux p\r
| Some t ->\r
- let j = find_eta_difference p t n_args in\r
- let k = 1 + max\r
- (compute_max_lambdas_at hd_var j p.div)\r
- (compute_max_lambdas_at hd_var j p.conv) in\r
- let p = step j k p in\r
- auto p\r
+ let js = find_eta_difference p t n_args in\r
+ (* print_endline (String.concat ", " (List.map string_of_int js)); *)\r
+ if js = [] then problem_fail p "no eta difference found (div subterm of conv?)";\r
+ let js = List.rev js in\r
+ List.iter\r
+ (fun j ->\r
+ try\r
+ let k = 1 + max\r
+ (compute_max_lambdas_at hd_var j p.div)\r
+ (compute_max_lambdas_at hd_var j p.conv) in\r
+ ignore (aux (step j k p))\r
+ with Fail(_, s) ->\r
+ print_endline ("Backtracking because: " ^ s)) js;\r
+ raise (Fail(-1, "no eta difference")) in\r
+ try\r
+ aux p\r
+ with Done sigma -> sigma\r
;;\r
\r
let problem_of (label, div, convs, ps, var_names) =\r
;;\r
\r
let solve p =\r
- if eta_subterm p.div p.conv\r
+ if is_stuck p.div then print_endline "!!! div is stuck. Problem was not run !!!"\r
+ else if eta_subterm p.div p.conv\r
then print_endline "!!! div is subterm of conv. Problem was not run !!!"\r
else check p (auto p)\r
;;\r