(* *)
(**************************************************************************)
+include "ground_2/lib/star.ma".
include "basic_2/notation/relations/relationstarstar_4.ma".
include "basic_2/static/lfxs.ma".
(* *)
(**************************************************************************)
+include "ground_2/lib/star.ma".
include "ground_2/lib/lstar.ma".
include "basic_2/relocation/lreq_lreq.ma".
(* *)
(**************************************************************************)
+include "ground_2/lib/star.ma".
include "basic_2/notation/relations/predtystar_5.ma".
include "basic_2/rt_transition/cpx.ma".
(* *)
(**************************************************************************)
+include "ground_2/lib/star.ma".
include "basic_2/notation/relations/suptermplus_6.ma".
include "basic_2/s_transition/fqu.ma".
(* *)
(**************************************************************************)
+include "ground_2/lib/star.ma".
include "basic_2/notation/relations/suptermstar_6.ma".
include "basic_2/s_transition/fquq.ma".
@SN_sn_intro #a1 #HRa12 #HSa12
elim HSa12 -HSa12 /2 width=1 by/
qed.
+
+(* Relations on unboxed triples *********************************************)
+
+definition tri_RC: ∀A,B,C. tri_relation A B C → tri_relation A B C ≝
+ λA,B,C,R,a1,b1,c1,a2,b2,c2. R … a1 b1 c1 a2 b2 c2 ∨
+ ∧∧ a1 = a2 & b1 = b2 & c1 = c2.
+
+lemma tri_RC_reflexive: ∀A,B,C,R. tri_reflexive A B C (tri_RC … R).
+/3 width=1 by and3_intro, or_intror/ qed.
(* Relations on unboxed triples *********************************************)
-definition tri_RC: ∀A,B,C. tri_relation A B C → tri_relation A B C ≝
- λA,B,C,R,a1,b1,c1,a2,b2,c2. R … a1 b1 c1 a2 b2 c2 ∨
- ∧∧ a1 = a2 & b1 = b2 & c1 = c2.
-
-lemma tri_RC_reflexive: ∀A,B,C,R. tri_reflexive A B C (tri_RC … R).
-/3 width=1 by and3_intro, or_intror/ qed.
-
definition tri_star: ∀A,B,C,R. tri_relation A B C ≝
λA,B,C,R. tri_RC A B C (tri_TC … R).