intros.elim H1.assumption.
qed.
+default \"equality\"
+ " ^ buri ^ "/eq.ind
+ " ^ buri ^ "/sym_eq.con
+ " ^ buri ^ "/trans_eq.con
+ " ^ buri ^ "/eq_ind.con
+ " ^ buri ^ "/eq_elim_r.con
+ " ^ buri ^ "/eq_f.con
+ " ^ buri ^ "/eq_f1.con.
+
theorem eq_f: \\forall A,B:Type.\\forall f:A\\to B.
\\forall x,y:A. eq A x y \\to eq B (f x) (f y).
intros.elim H.reflexivity.
intros.elim H.reflexivity.
qed.
-default \"equality\"
- " ^ buri ^ "/eq.ind
- " ^ buri ^ "/sym_eq.con
- " ^ buri ^ "/trans_eq.con
- " ^ buri ^ "/eq_ind.con
- " ^ buri ^ "/eq_elim_r.con
- " ^ buri ^ "/eq_f.con
- " ^ buri ^ "/eq_f1.con.
-
inductive ex (A:Type) (P:A \\to Prop) : Prop \\def
ex_intro: \\forall x:A. P x \\to ex A P.
interpretation \"exists\" 'exists \\eta.x =